Timezone: »
Transfer learning aims to leverage knowledge from pre-trained models to benefit the target task. Prior transfer learning work mainly transfers from a single model. However, with the emergence of deep models pre-trained from different resources, model hubs consisting of diverse models with various architectures, pre-trained datasets and learning paradigms are available. Directly applying single-model transfer learning methods to each model wastes the abundant knowledge of the model hub and suffers from high computational cost. In this paper, we propose a Hub-Pathway framework to enable knowledge transfer from a model hub. The framework generates data-dependent pathway weights, based on which we assign the pathway routes at the input level to decide which pre-trained models are activated and passed through, and then set the pathway aggregation at the output level to aggregate the knowledge from different models to make predictions. The proposed framework can be trained end-to-end with the target task-specific loss, where it learns to explore better pathway configurations and exploit the knowledge in pre-trained models for each target datum. We utilize a noisy pathway generator and design an exploration loss to further explore different pathways throughout the model hub. To fully exploit the knowledge in pre-trained models, each model is further trained by specific data that activate it, which ensures its performance and enhances knowledge transfer. Experiment results on computer vision and reinforcement learning tasks demonstrate that the proposed Hub-Pathway framework achieves the state-of-the-art performance for model hub transfer learning.
Author Information
Yang Shu (Tsinghua University)
Zhangjie Cao (Stanford University)
Ziyang Zhang (Huawei Technologies Ltd.)
Jianmin Wang (Tsinghua University)
Mingsheng Long (Tsinghua University)
More from the Same Authors
-
2022 Poster: Supported Policy Optimization for Offline Reinforcement Learning »
Jialong Wu · Haixu Wu · Zihan Qiu · Jianmin Wang · Mingsheng Long -
2022 Poster: Non-stationary Transformers: Exploring the Stationarity in Time Series Forecasting »
Yong Liu · Haixu Wu · Jianmin Wang · Mingsheng Long -
2022 : Domain Adaptation: Theory, Algorithms, and Open Library »
Mingsheng Long -
2022 Poster: Debiased Self-Training for Semi-Supervised Learning »
Baixu Chen · Junguang Jiang · Ximei Wang · Pengfei Wan · Jianmin Wang · Mingsheng Long -
2021 Poster: Cycle Self-Training for Domain Adaptation »
Hong Liu · Jianmin Wang · Mingsheng Long -
2021 Poster: Autoformer: Decomposition Transformers with Auto-Correlation for Long-Term Series Forecasting »
Haixu Wu · Jiehui Xu · Jianmin Wang · Mingsheng Long -
2020 Poster: Co-Tuning for Transfer Learning »
Kaichao You · Zhi Kou · Mingsheng Long · Jianmin Wang -
2020 Poster: Transferable Calibration with Lower Bias and Variance in Domain Adaptation »
Ximei Wang · Mingsheng Long · Jianmin Wang · Michael Jordan -
2020 Poster: Stochastic Normalization »
Zhi Kou · Kaichao You · Mingsheng Long · Jianmin Wang -
2020 Poster: Learning to Adapt to Evolving Domains »
Hong Liu · Mingsheng Long · Jianmin Wang · Yu Wang -
2019 Poster: Catastrophic Forgetting Meets Negative Transfer: Batch Spectral Shrinkage for Safe Transfer Learning »
Xinyang Chen · Sinan Wang · Bo Fu · Mingsheng Long · Jianmin Wang -
2019 Poster: Transferable Normalization: Towards Improving Transferability of Deep Neural Networks »
Ximei Wang · Ying Jin · Mingsheng Long · Jianmin Wang · Michael Jordan -
2018 Poster: Conditional Adversarial Domain Adaptation »
Mingsheng Long · ZHANGJIE CAO · Jianmin Wang · Michael Jordan -
2018 Poster: Generalized Zero-Shot Learning with Deep Calibration Network »
Shichen Liu · Mingsheng Long · Jianmin Wang · Michael Jordan -
2017 Poster: PredRNN: Recurrent Neural Networks for Predictive Learning using Spatiotemporal LSTMs »
Yunbo Wang · Mingsheng Long · Jianmin Wang · Zhifeng Gao · Philip S Yu -
2017 Poster: Learning Multiple Tasks with Multilinear Relationship Networks »
Mingsheng Long · ZHANGJIE CAO · Jianmin Wang · Philip S Yu -
2016 Poster: Unsupervised Domain Adaptation with Residual Transfer Networks »
Mingsheng Long · Han Zhu · Jianmin Wang · Michael Jordan -
2015 Workshop: Transfer and Multi-Task Learning: Trends and New Perspectives »
Anastasia Pentina · Christoph Lampert · Sinno Jialin Pan · Mingsheng Long · Judy Hoffman · Baochen Sun · Kate Saenko