Timezone: »
The Yeo-Johnson (YJ) transformation is a standard parametrized per-feature unidimensional transformation often used to Gaussianize features in machine learning. In this paper, we investigate the problem of applying the YJ transformation in a cross-silo Federated Learning setting under privacy constraints. For the first time, we prove that the YJ negative log-likelihood is in fact convex, which allows us to optimize it with exponential search. We numerically show that the resulting algorithm is more stable than the state-of-the-art approach based on the Brent minimization method. Building on this simple algorithm and Secure Multiparty Computation routines, we propose SECUREFEDYJ, a federated algorithm that performs a pooled-equivalent YJ transformation without leaking more information than the final fitted parameters do. Quantitative experiments on real data demonstrate that, in addition to being secure, our approach reliably normalizes features across silos as well as if data were pooled, making it a viable approach for safe federated feature Gaussianization.
Author Information
Tanguy Marchand (Owkin)
Boris Muzellec (Owkin)
Constance Béguier
Jean Ogier du Terrail (Owkin)
Mathieu Andreux (Owkin)
More from the Same Authors
-
2022 Poster: FLamby: Datasets and Benchmarks for Cross-Silo Federated Learning in Realistic Healthcare Settings »
Jean Ogier du Terrail · Samy-Safwan Ayed · Edwige Cyffers · Felix Grimberg · Chaoyang He · Regis Loeb · Paul Mangold · Tanguy Marchand · Othmane Marfoq · Erum Mushtaq · Boris Muzellec · Constantin Philippenko · Santiago Silva · Maria Teleńczuk · Shadi Albarqouni · Salman Avestimehr · Aurélien Bellet · Aymeric Dieuleveut · Martin Jaggi · Sai Praneeth Karimireddy · Marco Lorenzi · Giovanni Neglia · Marc Tommasi · Mathieu Andreux -
2020 Poster: Entropic Optimal Transport between Unbalanced Gaussian Measures has a Closed Form »
Hicham Janati · Boris Muzellec · Gabriel Peyré · Marco Cuturi -
2020 Oral: Entropic Optimal Transport between Unbalanced Gaussian Measures has a Closed Form »
Hicham Janati · Boris Muzellec · Gabriel Peyré · Marco Cuturi -
2019 Poster: Subspace Detours: Building Transport Plans that are Optimal on Subspace Projections »
Boris Muzellec · Marco Cuturi -
2018 Poster: Generalizing Point Embeddings using the Wasserstein Space of Elliptical Distributions »
Boris Muzellec · Marco Cuturi