Timezone: »
Learning high-level causal representations together with a causal model from unstructured low-level data such as pixels is impossible from observational data alone. We prove under mild assumptions that this representation is however identifiable in a weakly supervised setting. This involves a dataset with paired samples before and after random, unknown interventions, but no further labels. We then introduce implicit latent causal models, variational autoencoders that represent causal variables and causal structure without having to optimize an explicit discrete graph structure. On simple image data, including a novel dataset of simulated robotic manipulation, we demonstrate that such models can reliably identify the causal structure and disentangle causal variables.
Author Information
Johann Brehmer (Qualcomm AI Research)
Pim de Haan (University of Amsterdam, Qualcomm AI Research)
Phillip Lippe (University of Amsterdam)
Taco Cohen (Qualcomm AI Research)
Taco Cohen is a machine learning research scientist at Qualcomm AI Research in Amsterdam and a PhD student at the University of Amsterdam, supervised by prof. Max Welling. He was a co-founder of Scyfer, a company focussed on active deep learning, acquired by Qualcomm in 2017. He holds a BSc in theoretical computer science from Utrecht University and a MSc in artificial intelligence from the University of Amsterdam (both cum laude). His research is focussed on understanding and improving deep representation learning, in particular learning of equivariant and disentangled representations, data-efficient deep learning, learning on non-Euclidean domains, and applications of group representation theory and non-commutative harmonic analysis, as well as deep learning based source compression. He has done internships at Google Deepmind (working with Geoff Hinton) and OpenAI. He received the 2014 University of Amsterdam thesis prize, a Google PhD Fellowship, ICLR 2018 best paper award for “Spherical CNNs”, and was named one of 35 innovators under 35 in Europe by MIT in 2018.
More from the Same Authors
-
2021 : Scaling Up Machine Learning For Quantum Field Theory with Equivariant Continuous Flows »
Pim de Haan · Roberto Bondesan -
2021 : Equivariant graph neural networks as surrogate for computational fluid dynamics in 3D artery models »
Julian Suk · Phillip Lippe · Christoph Brune · Jelmer Wolterink -
2022 : On the Expressive Power of Geometric Graph Neural Networks »
Cristian Bodnar · Chaitanya K. Joshi · Simon Mathis · Taco Cohen · Pietro Liò -
2022 : Deconfounded Imitation Learning »
Risto Vuorio · Pim de Haan · Johann Brehmer · Hanno Ackermann · Daniel Dijkman · Taco Cohen -
2022 : Panel Discussion I: Geometric and topological principles for representation learning in ML »
Irina Higgins · Taco Cohen · Erik Bekkers · Nina Miolane · Rose Yu -
2022 : On the Expressive Power of Geometric Graph Neural Networks »
Cristian Bodnar · Chaitanya K. Joshi · Simon Mathis · Taco Cohen · Pietro Liò -
2022 : From Equivariance to Naturality »
Taco Cohen -
2022 Poster: A PAC-Bayesian Generalization Bound for Equivariant Networks »
Arash Behboodi · Gabriele Cesa · Taco Cohen -
2022 Poster: On the symmetries of the synchronization problem in Cryo-EM: Multi-Frequency Vector Diffusion Maps on the Projective Plane »
Gabriele Cesa · Arash Behboodi · Taco Cohen · Max Welling -
2020 Poster: Natural Graph Networks »
Pim de Haan · Taco Cohen · Max Welling -
2020 Tutorial: (Track2) Equivariant Networks Q&A »
Risi Kondor · Taco Cohen -
2020 Tutorial: (Track2) Equivariant Networks »
Risi Kondor · Taco Cohen -
2019 Poster: A General Theory of Equivariant CNNs on Homogeneous Spaces »
Taco Cohen · Mario Geiger · Maurice Weiler -
2019 Poster: Causal Confusion in Imitation Learning »
Pim de Haan · Dinesh Jayaraman · Sergey Levine -
2019 Oral: Causal Confusion in Imitation Learning »
Pim de Haan · Dinesh Jayaraman · Sergey Levine -
2018 : Poster Session »
Sujay Sanghavi · Vatsal Shah · Yanyao Shen · Tianchen Zhao · Yuandong Tian · Tomer Galanti · Mufan Li · Gilad Cohen · Daniel Rothchild · Aristide Baratin · Devansh Arpit · Vagelis Papalexakis · Michael Perlmutter · Ashok Vardhan Makkuva · Pim de Haan · Yingyan Lin · Wanmo Kang · Cheolhyoung Lee · Hao Shen · Sho Yaida · Dan Roberts · Nadav Cohen · Philippe Casgrain · Dejiao Zhang · Tengyu Ma · Avinash Ravichandran · Julian Emilio Salazar · Bo Li · Davis Liang · Christopher Wong · Glen Bigan Mbeng · Animesh Garg -
2018 : Coffee Break and Poster Session I »
Pim de Haan · Bin Wang · Dequan Wang · Aadil Hayat · Ibrahim Sobh · Muhammad Asif Rana · Thibault Buhet · Nicholas Rhinehart · Arjun Sharma · Alex Bewley · Michael Kelly · Lionel Blondé · Ozgur S. Oguz · Vaibhav Viswanathan · Jeroen Vanbaar · Konrad Żołna · Negar Rostamzadeh · Rowan McAllister · Sanjay Thakur · Alexandros Kalousis · Chelsea Sidrane · Sujoy Paul · Daphne Chen · Michal Garmulewicz · Henryk Michalewski · Coline Devin · Hongyu Ren · Jiaming Song · Wen Sun · Hanzhang Hu · Wulong Liu · Emilie Wirbel -
2018 Poster: 3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data »
Maurice Weiler · Wouter Boomsma · Mario Geiger · Max Welling · Taco Cohen