Timezone: »
Poster
Coresets for Vertical Federated Learning: Regularized Linear Regression and $K$-Means Clustering
Lingxiao Huang · Zhize Li · Jialin Sun · Haoyu Zhao
Vertical federated learning (VFL), where data features are stored in multiple parties distributively, is an important area in machine learning. However, the communication complexity for VFL is typically very high. In this paper, we propose a unified framework by constructing \emph{coresets} in a distributed fashion for communication-efficient VFL. We study two important learning tasks in the VFL setting: regularized linear regression and $k$-means clustering, and apply our coreset framework to both problems. We theoretically show that using coresets can drastically alleviate the communication complexity, while nearly maintain the solution quality. Numerical experiments are conducted to corroborate our theoretical findings.
Author Information
Lingxiao Huang (Huawei TCS Lab)
Zhize Li (Carnegie Mellon University)
Jialin Sun (Fudan University)
Haoyu Zhao (Princeton University)
More from the Same Authors
-
2021 Spotlight: Coresets for Time Series Clustering »
Lingxiao Huang · K Sudhir · Nisheeth Vishnoi -
2021 : DESTRESS: Computation-Optimal and Communication-Efficient Decentralized Nonconvex Finite-Sum Optimization »
Boyue Li · Zhize Li · Yuejie Chi -
2021 : DESTRESS: Computation-Optimal and Communication-Efficient Decentralized Nonconvex Finite-Sum Optimization »
Boyue Li · Zhize Li · Yuejie Chi -
2021 : ANITA: An Optimal Loopless Accelerated Variance-Reduced Gradient Method »
Zhize Li -
2021 : EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern Error Feedback »
Peter Richtarik · Igor Sokolov · Ilyas Fatkhullin · Eduard Gorbunov · Zhize Li -
2022 Poster: BEER: Fast $O(1/T)$ Rate for Decentralized Nonconvex Optimization with Communication Compression »
Haoyu Zhao · Boyue Li · Zhize Li · Peter Richtarik · Yuejie Chi -
2022 Poster: Efficient Submodular Optimization under Noise: Local Search is Robust »
Lingxiao Huang · Yuyi Wang · Chunxue Yang · Huanjian Zhou -
2022 Poster: SoteriaFL: A Unified Framework for Private Federated Learning with Communication Compression »
Zhize Li · Haoyu Zhao · Boyue Li · Yuejie Chi -
2021 : Poster Session 1 (gather.town) »
Hamed Jalali · Robert Hönig · Maximus Mutschler · Manuel Madeira · Abdurakhmon Sadiev · Egor Shulgin · Alasdair Paren · Pascal Esser · Simon Roburin · Julius Kunze · Agnieszka Słowik · Frederik Benzing · Futong Liu · Hongyi Li · Ryotaro Mitsuboshi · Grigory Malinovsky · Jayadev Naram · Zhize Li · Igor Sokolov · Sharan Vaswani -
2021 Poster: CANITA: Faster Rates for Distributed Convex Optimization with Communication Compression »
Zhize Li · Peter Richtarik -
2021 Poster: Coresets for Time Series Clustering »
Lingxiao Huang · K Sudhir · Nisheeth Vishnoi -
2020 : Poster Session 1 (gather.town) »
Laurent Condat · Tiffany Vlaar · Ohad Shamir · Mohammadi Zaki · Zhize Li · Guan-Horng Liu · Samuel Horváth · Mher Safaryan · Yoni Choukroun · Kumar Shridhar · Nabil Kahale · Jikai Jin · Pratik Kumar Jawanpuria · Gaurav Kumar Yadav · Kazuki Koyama · Junyoung Kim · Xiao Li · Saugata Purkayastha · Adil Salim · Dighanchal Banerjee · Peter Richtarik · Lakshman Mahto · Tian Ye · Bamdev Mishra · Huikang Liu · Jiajie Zhu -
2020 : Contributed talks in Session 1 (Zoom) »
Sebastian Stich · Laurent Condat · Zhize Li · Ohad Shamir · Tiffany Vlaar · Mohammadi Zaki -
2020 : Contributed Video: PAGE: A Simple and Optimal Probabilistic Gradient Estimator for Nonconvex Optimization, Zhize Li »
Zhize Li -
2020 Poster: Coresets for Regressions with Panel Data »
Lingxiao Huang · K Sudhir · Nisheeth Vishnoi -
2019 Poster: A unified variance-reduced accelerated gradient method for convex optimization »
Guanghui Lan · Zhize Li · Yi Zhou -
2019 Poster: SSRGD: Simple Stochastic Recursive Gradient Descent for Escaping Saddle Points »
Zhize Li -
2019 Poster: Coresets for Clustering with Fairness Constraints »
Lingxiao Huang · Shaofeng Jiang · Nisheeth Vishnoi