Timezone: »
Equivariant representation is necessary for the brain and artificial perceptual systems to faithfully represent the stimulus under some (Lie) group transformations. However, it remains unknown how recurrent neural circuits in the brain represent the stimulus equivariantly, nor the neural representation of abstract group operators. The present study uses a one-dimensional (1D) translation group as an example to explore the general recurrent neural circuit mechanism of the equivariant stimulus representation. We found that a continuous attractor network (CAN), a canonical neural circuit model, self-consistently generates a continuous family of stationary population responses (attractors) that represents the stimulus equivariantly. Inspired by the Drosophila's compass circuit, we found that the 1D translation operators can be represented by extra speed neurons besides the CAN, where speed neurons' responses represent the moving speed (1D translation group parameter), and their feedback connections to the CAN represent the translation generator (Lie algebra). We demonstrated that the network responses are consistent with experimental data. Our model for the first time demonstrates how recurrent neural circuitry in the brain achieves equivariant stimulus representation.
Author Information
Wenhao Zhang (UT Southwestern Medical Center)
Ying Nian Wu (University of California, Los Angeles)
Si Wu (Peking University)
More from the Same Authors
-
2020 : Paper 2: Energy-Based Continuous Inverse Optimal Control »
Yifei Xu · Jianwen Xie · Chris Baker · Yibiao Zhao · Ying Nian Wu -
2021 : Deep Generative model with Hierarchical Latent Factors for Timeseries Anomaly Detection »
Cristian Challu · Peihong Jiang · Ying Nian Wu · Laurent Callot -
2021 : Unsupervised Meta-Learning via Latent Space Energy-based Model of Symbol Vector Coupling »
Bo Pang · Deqian Kong · Ying Nian Wu -
2021 : Deep Generative model with Hierarchical Latent Factors for Timeseries Anomaly Detection »
Cristian Challu · Peihong Jiang · Ying Nian Wu · Laurent Callot -
2022 Poster: Adaptation Accelerating Sampling-based Bayesian Inference in Attractor Neural Networks »
Xingsi Dong · Zilong Ji · Tianhao Chu · Tiejun Huang · Wenhao Zhang · Si Wu -
2022 : Learn to Select Good Examples with Reinforcement Learning for Semi-structured Mathematical Reasoning »
Pan Lu · Liang Qiu · Kai-Wei Chang · Ying Nian Wu · Song-Chun Zhu · Tanmay Rajpurohit · Peter Clark · Ashwin Kalyan -
2022 : Conformal Isometry of Lie Group Representation in Recurrent Network of Grid Cells »
Dehong Xu · Ruiqi Gao · Wenhao Zhang · Xue-Xin Wei · Ying Nian Wu -
2022 : Neural-Symbolic Recursive Machine for Systematic Generalization »
Qing Li · Yixin Zhu · Yitao Liang · Ying Nian Wu · Song-Chun Zhu · Siyuan Huang -
2022 Poster: Oscillatory Tracking of Continuous Attractor Neural Networks Account for Phase Precession and Procession of Hippocampal Place Cells »
Tianhao Chu · Zilong Ji · Junfeng Zuo · Wenhao Zhang · Tiejun Huang · Yuanyuan Mi · Si Wu -
2021 Poster: On Path Integration of Grid Cells: Group Representation and Isotropic Scaling »
Ruiqi Gao · Jianwen Xie · Xue-Xin Wei · Song-Chun Zhu · Ying Nian Wu -
2021 Poster: Noisy Adaptation Generates Lévy Flights in Attractor Neural Networks »
Xingsi Dong · Tianhao Chu · Tiejun Huang · Zilong Ji · Si Wu -
2021 Poster: Iterative Teacher-Aware Learning »
Luyao Yuan · Dongruo Zhou · Junhong Shen · Jingdong Gao · Jeffrey L Chen · Quanquan Gu · Ying Nian Wu · Song-Chun Zhu -
2021 Poster: Unsupervised Foreground Extraction via Deep Region Competition »
Peiyu Yu · Sirui Xie · Xiaojian (Shawn) Ma · Yixin Zhu · Ying Nian Wu · Song-Chun Zhu -
2020 Poster: Learning Latent Space Energy-Based Prior Model »
Bo Pang · Tian Han · Erik Nijkamp · Song-Chun Zhu · Ying Nian Wu -
2019 Poster: A Normative Theory for Causal Inference and Bayes Factor Computation in Neural Circuits »
Wenhao Zhang · Si Wu · Brent Doiron · Tai Sing Lee -
2019 Poster: Push-pull Feedback Implements Hierarchical Information Retrieval Efficiently »
Xiao Liu · Xiaolong Zou · Zilong Ji · Gengshuo Tian · Yuanyuan Mi · Tiejun Huang · K. Y. Michael Wong · Si Wu -
2019 Poster: Learning Non-Convergent Non-Persistent Short-Run MCMC Toward Energy-Based Model »
Erik Nijkamp · Mitch Hill · Song-Chun Zhu · Ying Nian Wu -
2018 Poster: Cooperative Holistic Scene Understanding: Unifying 3D Object, Layout, and Camera Pose Estimation »
Siyuan Huang · Siyuan Qi · Yinxue Xiao · Yixin Zhu · Ying Nian Wu · Song-Chun Zhu