Timezone: »
Graph Neural Networks (GNNs) are attracting growing attention due to their effectiveness and flexibility in modeling a variety of graph-structured data. Exiting GNN architectures usually adopt simple pooling operations~(\eg{} sum, average, max) when aggregating messages from a local neighborhood for updating node representation or pooling node representations from the entire graph to compute the graph representation. Though simple and effective, these linear operations do not model high-order non-linear interactions among nodes. We propose the Tensorized Graph Neural Network (tGNN), a highly expressive GNN architecture relying on tensor decomposition to model high-order non-linear node interactions. tGNN leverages the symmetric CP decomposition to efficiently parameterize permutation-invariant multilinear maps for modeling node interactions. Theoretical and empirical analysis on both node and graph classification tasks show the superiority of tGNN over competitive baselines. In particular, tGNN achieves the most solid results on two OGB node classification datasets and one OGB graph classification dataset.
Author Information
Chenqing Hua (McGill University)
Guillaume Rabusseau (Mila - Université de Montréal)
Jian Tang (Mila)
More from the Same Authors
-
2021 : Towards a Trace-Preserving Tensor Network Representation of Quantum Channels »
Siddarth Srinivasan · Sandesh Adhikary · Jacob Miller · Guillaume Rabusseau · Byron Boots -
2022 Poster: Debiasing Graph Neural Networks via Learning Disentangled Causal Substructure »
Shaohua Fan · Xiao Wang · Yanhu Mo · Chuan Shi · Jian Tang -
2022 : MoleculeCLIP: Learning Transferable Molecule Multi-Modality Models via Natural Language »
Shengchao Liu · Weili Nie · Chengpeng Wang · Jiarui Lu · Zhuoran Qiao · Ling Liu · Jian Tang · Anima Anandkumar · Chaowei Xiao -
2022 : Complete the Missing Half: Augmenting Aggregation Filtering with Diversification for Graph Convolutional Networks »
Sitao Luan · Mingde Zhao · Chenqing Hua · Xiao-Wen Chang · Doina Precup -
2022 : GraphCG: Unsupervised Discovery of Steerable Factors in Graphs »
Shengchao Liu · Chengpeng Wang · Weili Nie · Hanchen Wang · Jiarui Lu · Bolei Zhou · Jian Tang -
2022 Workshop: Graph Learning for Industrial Applications: Finance, Crime Detection, Medicine and Social Media »
Manuela Veloso · John Dickerson · Senthil Kumar · Eren K. · Jian Tang · Jie Chen · Peter Henstock · Susan Tibbs · Ani Calinescu · Naftali Cohen · C. Bayan Bruss · Armineh Nourbakhsh -
2022 Spotlight: Lightning Talks 3B-3 »
Sitao Luan · Zhiyuan You · Ruofan Liu · Linhao Qu · Yuwei Fu · Jiaxi Wang · Chunyu Wei · Jian Liang · xiaoyuan luo · Di Wu · Yun Lin · Lei Cui · Ji Wu · Chenqing Hua · Yujun Shen · Qincheng Lu · XIANGLIN YANG · Benoit Boulet · Manning Wang · Di Liu · Lei Huang · Fei Wang · Kai Yang · Jiaqi Zhu · Jin Song Dong · Zhijian Song · Xin Lu · Mingde Zhao · Shuyuan Zhang · Yu Zheng · Xiao-Wen Chang · Xinyi Le · Doina Precup -
2022 Spotlight: Revisiting Heterophily For Graph Neural Networks »
Sitao Luan · Chenqing Hua · Qincheng Lu · Jiaqi Zhu · Mingde Zhao · Shuyuan Zhang · Xiao-Wen Chang · Doina Precup -
2022 Spotlight: Debiasing Graph Neural Networks via Learning Disentangled Causal Substructure »
Shaohua Fan · Xiao Wang · Yanhu Mo · Chuan Shi · Jian Tang -
2022 Workshop: Temporal Graph Learning Workshop »
Reihaneh Rabbany · Jian Tang · Michael Bronstein · Shenyang Huang · Meng Qu · Kellin Pelrine · Jianan Zhao · Farimah Poursafaei · Aarash Feizi -
2022 Poster: Inductive Logical Query Answering in Knowledge Graphs »
Michael Galkin · Zhaocheng Zhu · Hongyu Ren · Jian Tang -
2022 Poster: Revisiting Heterophily For Graph Neural Networks »
Sitao Luan · Chenqing Hua · Qincheng Lu · Jiaqi Zhu · Mingde Zhao · Shuyuan Zhang · Xiao-Wen Chang · Doina Precup -
2022 Poster: PEER: A Comprehensive and Multi-Task Benchmark for Protein Sequence Understanding »
Minghao Xu · Zuobai Zhang · Jiarui Lu · Zhaocheng Zhu · Yangtian Zhang · Ma Chang · Runcheng Liu · Jian Tang -
2021 : Discussion Pannel »
Xiao-Yang Liu · Qibin Zhao · Chao Li · Guillaume Rabusseau -
2021 : Towards a Trace-Preserving Tensor Network Representation of Quantum Channels »
Siddarth Srinivasan · Sandesh Adhikary · Jacob Miller · Guillaume Rabusseau · Byron Boots