Timezone: »
Poster
Robust Imitation via Mirror Descent Inverse Reinforcement Learning
Dong-Sig Han · Hyunseo Kim · Hyundo Lee · JeHwan Ryu · Byoung-Tak Zhang
Recently, adversarial imitation learning has shown a scalable reward acquisition method for inverse reinforcement learning (IRL) problems. However, estimated reward signals often become uncertain and fail to train a reliable statistical model since the existing methods tend to solve hard optimization problems directly. Inspired by a first-order optimization method called mirror descent, this paper proposes to predict a sequence of reward functions, which are iterative solutions for a constrained convex problem. IRL solutions derived by mirror descent are tolerant to the uncertainty incurred by target density estimation since the amount of reward learning is regulated with respect to local geometric constraints. We prove that the proposed mirror descent update rule ensures robust minimization of a Bregman divergence in terms of a rigorous regret bound of $\mathcal{O}(1/T)$ for step sizes $\{\eta_t\}_{t=1}^{T}$. Our IRL method was applied on top of an adversarial framework, and it outperformed existing adversarial methods in an extensive suite of benchmarks.
Author Information
Dong-Sig Han (Seoul National University)
Hyunseo Kim (Seoul National University)
Hyundo Lee (Seoul National University)
JeHwan Ryu (Seoul National University)
Byoung-Tak Zhang (Seoul National University)
More from the Same Authors
-
2021 : Partition-based Local Independence Discovery »
Inwoo Hwang · Byoung-Tak Zhang · Sanghack Lee -
2021 : C^3: Contrastive Learning for Cross-domain Correspondence in Few-shot Image Generation »
Hyukgi Lee · Gi-Cheon Kang · Chang-Hoon Jeong · Hanwool Sul · Byoung-Tak Zhang -
2022 Poster: SelecMix: Debiased Learning by Contradicting-pair Sampling »
Inwoo Hwang · Sangjun Lee · Yunhyeok Kwak · Seong Joon Oh · Damien Teney · Jin-Hwa Kim · Byoung-Tak Zhang -
2021 Poster: Goal-Aware Cross-Entropy for Multi-Target Reinforcement Learning »
Kibeom Kim · Min Whoo Lee · Yoonsung Kim · JeHwan Ryu · Minsu Lee · Byoung-Tak Zhang -
2020 Workshop: BabyMind: How Babies Learn and How Machines Can Imitate »
Byoung-Tak Zhang · Gary Marcus · Angelo Cangelosi · Pia Knoeferle · Klaus Obermayer · David Vernon · Chen Yu -
2020 : Opening Remarks: BabyMind, Byoung-Tak Zhang and Gary Marcus »
Byoung-Tak Zhang · Gary Marcus -
2018 Poster: Answerer in Questioner's Mind: Information Theoretic Approach to Goal-Oriented Visual Dialog »
Sang-Woo Lee · Yu-Jung Heo · Byoung-Tak Zhang -
2018 Spotlight: Answerer in Questioner's Mind: Information Theoretic Approach to Goal-Oriented Visual Dialog »
Sang-Woo Lee · Yu-Jung Heo · Byoung-Tak Zhang -
2018 Poster: Bilinear Attention Networks »
Jin-Hwa Kim · Jaehyun Jun · Byoung-Tak Zhang -
2017 Poster: Overcoming Catastrophic Forgetting by Incremental Moment Matching »
Sang-Woo Lee · Jin-Hwa Kim · Jaehyun Jun · Jung-Woo Ha · Byoung-Tak Zhang -
2017 Spotlight: Overcoming Catastrophic Forgetting by Incremental Moment Matching »
Sang-Woo Lee · Jin-Hwa Kim · Jaehyun Jun · Jung-Woo Ha · Byoung-Tak Zhang -
2016 : PororoQA: Cartoon Video Series Dataset for Story Understanding »
KyungMin Kim · Min-Oh Heo · Byoung-Tak Zhang -
2016 Poster: Multimodal Residual Learning for Visual QA »
Jin-Hwa Kim · Sang-Woo Lee · Donghyun Kwak · Min-Oh Heo · Jeonghee Kim · Jung-Woo Ha · Byoung-Tak Zhang -
2010 Poster: Generative Local Metric Learning for Nearest Neighbor Classification »
Yung-Kyun Noh · Byoung-Tak Zhang · Daniel Lee