Timezone: »
Estimating the effects of continuous-valued interventions from observational data is a critically important task for climate science, healthcare, and economics. Recent work focuses on designing neural network architectures and regularization functions to allow for scalable estimation of average and individual-level dose-response curves from high-dimensional, large-sample data. Such methodologies assume ignorability (observation of all confounding variables) and positivity (observation of all treatment levels for every covariate value describing a set of units), assumptions problematic in the continuous treatment regime. Scalable sensitivity and uncertainty analyses to understand the ignorance induced in causal estimates when these assumptions are relaxed are less studied. Here, we develop a continuous treatment-effect marginal sensitivity model (CMSM) and derive bounds that agree with the observed data and a researcher-defined level of hidden confounding. We introduce a scalable algorithm and uncertainty-aware deep models to derive and estimate these bounds for high-dimensional, large-sample observational data. We work in concert with climate scientists interested in the climatological impacts of human emissions on cloud properties using satellite observations from the past 15 years. This problem is known to be complicated by many unobserved confounders.
Author Information
Andrew Jesson (University of Oxford)
Alyson Douglas (University of Oxford)
Peter Manshausen (University of Oxford)
Maëlys Solal (University of Oxford | Ecole Normale Superieure de Paris)
Nicolai Meinshausen (ETH Zurich)
Philip Stier (University of Oxford)
Yarin Gal (University of OXford)
Uri Shalit (Technion)
More from the Same Authors
-
2020 : Paper 40: Real2sim: Automatic Generation of Open Street Map Towns For Autonomous Driving Benchmarks »
Panagiotis Tigas · Yarin Gal -
2021 : Bandits with Partially Observable Confounded Data »
Guy Tennenholtz · Uri Shalit · Shie Mannor · Yonathan Efroni -
2021 : Covariate Shift of Latent Confounders in Imitation and Reinforcement Learning »
Guy Tennenholtz · Assaf Hallak · Gal Dalal · Shie Mannor · Gal Chechik · Uri Shalit -
2021 : Covariate Shift of Latent Confounders in Imitation and Reinforcement Learning »
Guy Tennenholtz · Assaf Hallak · Gal Dalal · Shie Mannor · Gal Chechik · Uri Shalit -
2021 : Using Non-Linear Causal Models to Study Aerosol-Cloud Interactions in the Southeast Pacific »
Andrew Jesson · Peter Manshausen · Alyson Douglas · Duncan Watson-Parris · Yarin Gal · Philip Stier -
2021 : Using Non-Linear Causal Models to StudyAerosol-Cloud Interactions in the Southeast Pacific »
Andrew Jesson · Peter Manshausen · Alyson Douglas · Duncan Watson-Parris · Yarin Gal · Philip Stier -
2021 : On Feature Collapse and Deep Kernel Learning for Single Forward Pass Uncertainty »
Joost van Amersfoort · Lewis Smith · Andrew Jesson · Oscar Key · Yarin Gal -
2021 : Covariate Shift of Latent Confounders in Imitation and Reinforcement Learning »
Guy Tennenholtz · Assaf Hallak · Gal Dalal · Shie Mannor · Gal Chechik · Uri Shalit -
2022 : Discovering Long-period Exoplanets using Deep Learning with Citizen Science Labels »
Shreshth A Malik · Nora Eisner · Chris Lintott · Yarin Gal -
2022 : Using uncertainty-aware machine learning models to study aerosol-cloud interactions »
Maëlys Solal · Andrew Jesson · Yarin Gal · Alyson Douglas -
2022 : TranceptEVE: Combining Family-specific and Family-agnostic Models of Protein Sequences for Improved Fitness Prediction »
Pascal Notin · Lodevicus van Niekerk · Aaron Kollasch · Daniel Ritter · Yarin Gal · Debora Marks -
2022 : Malign Overfitting: Interpolation and Invariance are Fundamentally at Odds »
Yoav Wald · Gal Yona · Uri Shalit · Yair Carmon -
2022 : Can Active Sampling Reduce Causal Confusion in Offline Reinforcement Learning? »
Gunshi Gupta · Tim G. J. Rudner · Rowan McAllister · Adrien Gaidon · Yarin Gal -
2022 : Can Active Sampling Reduce Causal Confusion in Offline Reinforcement Learning? »
Gunshi Gupta · Tim G. J. Rudner · Rowan McAllister · Adrien Gaidon · Yarin Gal -
2022 : What 'Out-of-distribution' Is and Is Not »
Sebastian Farquhar · Yarin Gal -
2022 : Semantic Uncertainty: Linguistic Invariances for Uncertainty Estimation in Natural Language Generation »
Lorenz Kuhn · Yarin Gal · Sebastian Farquhar -
2022 : Can Active Sampling Reduce Causal Confusion in Offline Reinforcement Learning? »
Gunshi Gupta · Tim G. J. Rudner · Rowan McAllister · Adrien Gaidon · Yarin Gal -
2022 Poster: Tractable Function-Space Variational Inference in Bayesian Neural Networks »
Tim G. J. Rudner · Zonghao Chen · Yee Whye Teh · Yarin Gal -
2022 Poster: Interventions, Where and How? Experimental Design for Causal Models at Scale »
Panagiotis Tigas · Yashas Annadani · Andrew Jesson · Bernhard Schölkopf · Yarin Gal · Stefan Bauer -
2022 Poster: Reinforcement Learning with a Terminator »
Guy Tennenholtz · Nadav Merlis · Lior Shani · Shie Mannor · Uri Shalit · Gal Chechik · Assaf Hallak · Gal Dalal -
2022 Poster: Active Surrogate Estimators: An Active Learning Approach to Label-Efficient Model Evaluation »
Jannik Kossen · Sebastian Farquhar · Yarin Gal · Thomas Rainforth -
2021 : Uri Shalit - Calibration, out-of-distribution generalization and a path towards causal representations »
Uri Shalit -
2021 Poster: Causal-BALD: Deep Bayesian Active Learning of Outcomes to Infer Treatment-Effects from Observational Data »
Andrew Jesson · Panagiotis Tigas · Joost van Amersfoort · Andreas Kirsch · Uri Shalit · Yarin Gal -
2021 Poster: On Calibration and Out-of-Domain Generalization »
Yoav Wald · Amir Feder · Daniel Greenfeld · Uri Shalit -
2020 Poster: Identifying Causal-Effect Inference Failure with Uncertainty-Aware Models »
Andrew Jesson · Sören Mindermann · Uri Shalit · Yarin Gal -
2020 Poster: A causal view of compositional zero-shot recognition »
Yuval Atzmon · Felix Kreuk · Uri Shalit · Gal Chechik -
2020 Spotlight: A causal view of compositional zero-shot recognition »
Yuval Atzmon · Felix Kreuk · Uri Shalit · Gal Chechik -
2018 : Datasets and Benchmarks for Causal Learning »
Csaba Szepesvari · Isabelle Guyon · Nicolai Meinshausen · David Blei · Elias Bareinboim · Bernhard Schölkopf · Pietro Perona -
2018 : Causality and Distributional Robustness »
Nicolai Meinshausen -
2018 Poster: BRUNO: A Deep Recurrent Model for Exchangeable Data »
Iryna Korshunova · Jonas Degrave · Ferenc Huszar · Yarin Gal · Arthur Gretton · Joni Dambre -
2018 Poster: Removing Hidden Confounding by Experimental Grounding »
Nathan Kallus · Aahlad Puli · Uri Shalit -
2018 Spotlight: Removing Hidden Confounding by Experimental Grounding »
Nathan Kallus · Aahlad Puli · Uri Shalit -
2017 Workshop: Machine Learning for Health (ML4H) - What Parts of Healthcare are Ripe for Disruption by Machine Learning Right Now? »
Jason Fries · Alex Wiltschko · Andrew Beam · Isaac S Kohane · Jasper Snoek · Peter Schulam · Madalina Fiterau · David Kale · Rajesh Ranganath · Bruno Jedynak · Michael Hughes · Tristan Naumann · Natalia Antropova · Adrian Dalca · SHUBHI ASTHANA · Prateek Tandon · Jaz Kandola · Uri Shalit · Marzyeh Ghassemi · Tim Althoff · Alexander Ratner · Jumana Dakka -
2017 Poster: Causal Effect Inference with Deep Latent-Variable Models »
Christos Louizos · Uri Shalit · Joris Mooij · David Sontag · Richard Zemel · Max Welling -
2016 Workshop: Machine Learning for Health »
Uri Shalit · Marzyeh Ghassemi · Jason Fries · Rajesh Ranganath · Theofanis Karaletsos · David Kale · Peter Schulam · Madalina Fiterau -
2016 Poster: Scalable Adaptive Stochastic Optimization Using Random Projections »
Gabriel Krummenacher · Brian McWilliams · Yannic Kilcher · Joachim M Buhmann · Nicolai Meinshausen -
2015 Poster: BACKSHIFT: Learning causal cyclic graphs from unknown shift interventions »
Dominik Rothenhäusler · Christina Heinze-Deml · Jonas Peters · Nicolai Meinshausen -
2010 Spotlight: Online Learning in The Manifold of Low-Rank Matrices »
Uri Shalit · Daphna Weinshall · Gal Chechik -
2010 Poster: Online Learning in The Manifold of Low-Rank Matrices »
Uri Shalit · Daphna Weinshall · Gal Chechik -
2009 Poster: An Online Algorithm for Large Scale Image Similarity Learning »
Gal Chechik · Uri Shalit · Varun Sharma · Samy Bengio