Timezone: »
We consider experiments in dynamical systems where interventions on some experimental units impact other units through a limiting constraint (such as a limited supply of products). Despite outsize practical importance, the best estimators for this `Markovian' interference problem are largely heuristic in nature, and their bias is not well understood. We formalize the problem of inference in such experiments as one of policy evaluation. Off-policy estimators, while unbiased, apparently incur a large penalty in variance relative to state-of-the-art heuristics. We introduce an on-policy estimator: the Differences-In-Q's (DQ) estimator. We show that the DQ estimator can in general have exponentially smaller variance than off-policy evaluation. At the same time, its bias is second order in the impact of the intervention. This yields a striking bias-variance tradeoff so that the DQ estimator effectively dominates state-of-the-art alternatives. From a theoretical perspective, we introduce three separate novel techniques that are of independent interest in the theory of Reinforcement Learning (RL). Our empirical evaluation includes a set of experiments on a city-scale ride-hailing simulator.
Author Information
Vivek Farias (Massachusetts Institute of Technology)
Andrew Li (Carnegie Mellon University)
Tianyi Peng (Massachusetts Institute of Technology)
Andrew Zheng (Massachusetts Institute of Technology)
More from the Same Authors
-
2021 Spotlight: Fair Exploration via Axiomatic Bargaining »
Jackie Baek · Vivek Farias -
2021 : Learning Treatment Effects in Panels with General Intervention Patterns »
Vivek Farias · Andrew Li · Tianyi Peng -
2021 : The Limits to Learning a Diffusion Model »
Jackie Baek · Vivek Farias · ANDREEA GEORGESCU · Retsef Levi · Tianyi Peng · Joshua Wilde · Andrew Zheng -
2021 : The Limits to Learning a Diffusion Model »
Jackie Baek · Vivek Farias · ANDREEA GEORGESCU · Retsef Levi · Tianyi Peng · Joshua Wilde · Andrew Zheng -
2022 Panel: Panel 5A-2: Causal Identification under… & Markovian Interference in… »
Andrew Zheng · Amin Jaber -
2022 Spotlight: Dynamic Pricing with Monotonicity Constraint under Unknown Parametric Demand Model »
Su Jia · Andrew Li · R Ravi -
2022 Spotlight: Lightning Talks 4A-1 »
Jiawei Huang · Su Jia · Abdurakhmon Sadiev · Ruomin Huang · Yuanyu Wan · Denizalp Goktas · Jiechao Guan · Andrew Li · Wei-Wei Tu · Li Zhao · Amy Greenwald · Jiawei Huang · Dmitry Kovalev · Yong Liu · Wenjie Liu · Peter Richtarik · Lijun Zhang · Zhiwu Lu · R Ravi · Tao Qin · Wei Chen · Hu Ding · Nan Jiang · Tie-Yan Liu -
2022 Poster: Dynamic Pricing with Monotonicity Constraint under Unknown Parametric Demand Model »
Su Jia · Andrew Li · R Ravi -
2021 Oral: Learning Treatment Effects in Panels with General Intervention Patterns »
Vivek Farias · Andrew Li · Tianyi Peng -
2021 Poster: Greedy Approximation Algorithms for Active Sequential Hypothesis Testing »
Kyra Gan · Su Jia · Andrew Li -
2021 Poster: Fair Exploration via Axiomatic Bargaining »
Jackie Baek · Vivek Farias -
2021 Poster: Learning Treatment Effects in Panels with General Intervention Patterns »
Vivek Farias · Andrew Li · Tianyi Peng -
2016 Poster: Optimistic Gittins Indices »
Eli Gutin · Vivek Farias -
2012 Poster: Non-parametric Approximate Dynamic Programming via the Kernel Method »
Nikhil Bhat · Ciamac C Moallemi · Vivek Farias -
2009 Poster: A Data-Driven Approach to Modeling Choice »
Vivek Farias · Srikanth Jagabathula · Devavrat Shah -
2009 Spotlight: A Data-Driven Approach to Modeling Choice »
Vivek Farias · Srikanth Jagabathula · Devavrat Shah -
2009 Poster: A Smoothed Approximate Linear Program »
Vijay Desai · Vivek Farias · Ciamac C Moallemi -
2009 Spotlight: A Smoothed Approximate Linear Program »
Vijay Desai · Vivek Farias · Ciamac C Moallemi