Timezone: »
A central issue in machine learning is how to train models on sensitive user data. Industry has widely adopted a simple algorithm: Stochastic Gradient Descent with noise (a.k.a. Stochastic Gradient Langevin Dynamics). However, foundational theoretical questions about this algorithm's privacy loss remain open---even in the seemingly simple setting of smooth convex losses over a bounded domain. Our main result resolves these questions: for a large range of parameters, we characterize the differential privacy up to a constant. This result reveals that all previous analyses for this setting have the wrong qualitative behavior. Specifically, while previous privacy analyses increase ad infinitum in the number of iterations, we show that after a small burn-in period, running SGD longer leaks no further privacy. Our analysis departs from previous approaches based on fast mixing, instead using techniques based on optimal transport (namely, Privacy Amplification by Iteration) and the Sampled Gaussian Mechanism (namely, Privacy Amplification by Sampling). Our techniques readily extend to other settings.
Author Information
Jason Altschuler (MIT)
Kunal Talwar (Apple)
More from the Same Authors
-
2021 Spotlight: Averaging on the Bures-Wasserstein manifold: dimension-free convergence of gradient descent »
Jason Altschuler · Sinho Chewi · Patrik R Gerber · Austin Stromme -
2023 Poster: Fast Optimal Locally Private Mean Estimation via Random Projections »
Hilal Asi · Vitaly Feldman · Jelani Nelson · Huy Nguyen · Kunal Talwar -
2022 Panel: Panel 1C-5: Privacy of Noisy… & Near-Optimal Private and… »
Shyam Narayanan · Kunal Talwar -
2022 Poster: Mean Estimation with User-level Privacy under Data Heterogeneity »
Rachel Cummings · Vitaly Feldman · Audra McMillan · Kunal Talwar -
2022 Poster: FLAIR: Federated Learning Annotated Image Repository »
Congzheng Song · Filip Granqvist · Kunal Talwar -
2022 Poster: Subspace Recovery from Heterogeneous Data with Non-isotropic Noise »
John Duchi · Vitaly Feldman · Lunjia Hu · Kunal Talwar -
2021 Workshop: Optimal Transport and Machine Learning »
Jason Altschuler · Charlotte Bunne · Laetitia Chapel · Marco Cuturi · Rémi Flamary · Gabriel Peyré · Alexandra Suvorikova -
2021 Poster: Averaging on the Bures-Wasserstein manifold: dimension-free convergence of gradient descent »
Jason Altschuler · Sinho Chewi · Patrik R Gerber · Austin Stromme -
2020 Poster: Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses »
Raef Bassily · Vitaly Feldman · Cristóbal Guzmán · Kunal Talwar -
2020 Spotlight: Stability of Stochastic Gradient Descent on Nonsmooth Convex Losses »
Raef Bassily · Vitaly Feldman · Cristóbal Guzmán · Kunal Talwar -
2020 Poster: Stochastic Optimization with Laggard Data Pipelines »
Naman Agarwal · Rohan Anil · Tomer Koren · Kunal Talwar · Cyril Zhang -
2020 Poster: Faster Differentially Private Samplers via Rényi Divergence Analysis of Discretized Langevin MCMC »
Arun Ganesh · Kunal Talwar -
2020 Poster: On the Error Resistance of Hinge-Loss Minimization »
Kunal Talwar -
2019 : Private Stochastic Convex Optimization: Optimal Rates in Linear Time »
Vitaly Feldman · Tomer Koren · Kunal Talwar -
2019 Poster: Private Stochastic Convex Optimization with Optimal Rates »
Raef Bassily · Vitaly Feldman · Kunal Talwar · Abhradeep Guha Thakurta -
2019 Spotlight: Private Stochastic Convex Optimization with Optimal Rates »
Raef Bassily · Vitaly Feldman · Kunal Talwar · Abhradeep Guha Thakurta -
2019 Poster: Computational Separations between Sampling and Optimization »
Kunal Talwar -
2019 Poster: Massively scalable Sinkhorn distances via the Nyström method »
Jason Altschuler · Francis Bach · Alessandro Rudi · Jonathan Niles-Weed -
2017 Poster: Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration »
Jason Altschuler · Jonathan Niles-Weed · Philippe Rigollet -
2017 Spotlight: Near-linear time approximation algorithms for optimal transport via Sinkhorn iteration »
Jason Altschuler · Jonathan Niles-Weed · Philippe Rigollet