Timezone: »
Although the variational autoencoder (VAE) and its conditional extension (CVAE) are capable of state-of-the-art results across multiple domains, their precise behavior is still not fully understood, particularly in the context of data (like images) that lie on or near a low-dimensional manifold. For example, while prior work has suggested that the globally optimal VAE solution can learn the correct manifold dimension, a necessary (but not sufficient) condition for producing samples from the true data distribution, this has never been rigorously proven. Moreover, it remains unclear how such considerations would change when various types of conditioning variables are introduced, or when the data support is extended to a union of manifolds (e.g., as is likely the case for MNIST digits and related). In this work, we address these points by first proving that VAE global minima are indeed capable of recovering the correct manifold dimension. We then extend this result to more general CVAEs, demonstrating practical scenarios whereby the conditioning variables allow the model to adaptively learn manifolds of varying dimension across samples. Our analyses, which have practical implications for various CVAE design choices, are also supported by numerical results on both synthetic and real-world datasets.
Author Information
Yijia Zheng (Purdue University)
Tong He (Amazon Web Services)
Yixuan Qiu (Shanghai University of Finance and Economics)
David P Wipf (AWS)
More from the Same Authors
-
2021 : A Closer Look at Distribution Shifts and Out-of-Distribution Generalization on Graphs »
Mucong Ding · Kezhi Kong · Jiuhai Chen · John Kirchenbauer · Micah Goldblum · David P Wipf · Furong Huang · Tom Goldstein -
2022 Poster: Learning Enhanced Representation for Tabular Data via Neighborhood Propagation »
Kounianhua Du · Weinan Zhang · Ruiwen Zhou · Yangkun Wang · Xilong Zhao · Jiarui Jin · Quan Gan · Zheng Zhang · David P Wipf -
2023 Poster: ReHLine: Regularized Composite ReLU-ReHU Loss Minimization with Linear Computation and Linear Convergence »
Ben Dai · Yixuan Qiu -
2022 Spotlight: Lightning Talks 5B-3 »
Yanze Wu · Jie Xiao · Nianzu Yang · Jieyi Bi · Jian Yao · Yiting Chen · Qizhou Wang · Yangru Huang · Yongqiang Chen · Peixi Peng · Yuxin Hong · Xintao Wang · Feng Liu · Yining Ma · Qibing Ren · Xueyang Fu · Yonggang Zhang · Kaipeng Zeng · Jiahai Wang · GEN LI · Yonggang Zhang · Qitian Wu · Yifan Zhao · Chiyu Wang · Junchi Yan · Feng Wu · Yatao Bian · Xiaosong Jia · Ying Shan · Zhiguang Cao · Zheng-Jun Zha · Guangyao Chen · Tianjun Xiao · Han Yang · Jing Zhang · Jinbiao Chen · MA Kaili · Yonghong Tian · Junchi Yan · Chen Gong · Tong He · Binghui Xie · Yuan Sun · Francesco Locatello · Tongliang Liu · Yeow Meng Chee · David P Wipf · Tongliang Liu · Bo Han · Bo Han · Yanwei Fu · James Cheng · Zheng Zhang -
2022 Spotlight: Self-supervised Amodal Video Object Segmentation »
Jian Yao · Yuxin Hong · Chiyu Wang · Tianjun Xiao · Tong He · Francesco Locatello · David P Wipf · Yanwei Fu · Zheng Zhang -
2022 Spotlight: NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification »
Qitian Wu · Wentao Zhao · Zenan Li · David P Wipf · Junchi Yan -
2022 Spotlight: Lightning Talks 1B-1 »
Qitian Wu · Runlin Lei · Rongqin Chen · Luca Pinchetti · Yangze Zhou · Abhinav Kumar · Hans Hao-Hsun Hsu · Wentao Zhao · Chenhao Tan · Zhen Wang · Shenghui Zhang · Yuesong Shen · Tommaso Salvatori · Gitta Kutyniok · Zenan Li · Amit Sharma · Leong Hou U · Yordan Yordanov · Christian Tomani · Bruno Ribeiro · Yaliang Li · David P Wipf · Daniel Cremers · Bolin Ding · Beren Millidge · Ye Li · Yuhang Song · Junchi Yan · Zhewei Wei · Thomas Lukasiewicz -
2022 Poster: NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification »
Qitian Wu · Wentao Zhao · Zenan Li · David P Wipf · Junchi Yan -
2022 Poster: Transformers from an Optimization Perspective »
Yongyi Yang · zengfeng Huang · David P Wipf -
2022 Poster: Descent Steps of a Relation-Aware Energy Produce Heterogeneous Graph Neural Networks »
Hongjoon Ahn · Yongyi Yang · Quan Gan · Taesup Moon · David P Wipf -
2022 Poster: Self-supervised Amodal Video Object Segmentation »
Jian Yao · Yuxin Hong · Chiyu Wang · Tianjun Xiao · Tong He · Francesco Locatello · David P Wipf · Yanwei Fu · Zheng Zhang -
2021 : A Closer Look at Distribution Shifts and Out-of-Distribution Generalization on Graphs »
Mucong Ding · Kezhi Kong · Jiuhai Chen · John Kirchenbauer · Micah Goldblum · David P Wipf · Furong Huang · Tom Goldstein -
2021 Poster: GRIN: Generative Relation and Intention Network for Multi-agent Trajectory Prediction »
Longyuan Li · Jian Yao · Li Wenliang · Tong He · Tianjun Xiao · Junchi Yan · David Wipf · Zheng Zhang -
2021 Poster: Progressive Coordinate Transforms for Monocular 3D Object Detection »
Li Wang · Li Zhang · Yi Zhu · Zhi Zhang · Tong He · Mu Li · Xiangyang Xue -
2020 Poster: Further Analysis of Outlier Detection with Deep Generative Models »
Ziyu Wang · Bin Dai · David P Wipf · Jun Zhu -
2012 Poster: Dual-Space Analysis of the Sparse Linear Model »
David P Wipf -
2011 Poster: Sparse Estimation with Structured Dictionaries »
David P Wipf -
2011 Spotlight: Sparse Estimation with Structured Dictionaries »
David P Wipf -
2009 Poster: Sparse Estimation Using General Likelihoods and Non-Factorial Priors »
David P Wipf · Sri Nagarajan -
2008 Poster: Estimating the Location and Orientation of Complex, Correlated Neural Activity using MEG »
David P Wipf · Julia Owen · Hagai Attias · Kensuke Sekihara · Sri Nagarajan -
2008 Spotlight: Estimating the Location and Orientation of Complex, Correlated Neural Activity using MEG »
David P Wipf · Julia Owen · Hagai Attias · Kensuke Sekihara · Sri Nagarajan -
2007 Poster: A New View of Automatic Relevance Determination »
David P Wipf · Srikantan Nagarajan -
2006 Poster: Analysis of Empirical Bayesian Methods for Neuroelectromagnetic Source Localization »
David P Wipf · Rey R Ramirez · Jason A Palmer · Scott Makeig · Bhaskar Rao -
2006 Spotlight: Analysis of Empirical Bayesian Methods for Neuroelectromagnetic Source Localization »
David P Wipf · Rey R Ramirez · Jason A Palmer · Scott Makeig · Bhaskar Rao