Timezone: »
Poster
Continual learning: a feature extraction formalization, an efficient algorithm, and fundamental obstructions
Binghui Peng · Andrej Risteski
Continual learning is an emerging paradigm in machine learning, wherein a model is exposed in an online fashion to data from multiple different distributions (i.e. environments), and is expected to adapt to the distribution change. Precisely, the goal is to perform well in the new environment, while simultaneously retaining the performance on the previous environments (i.e. avoid ``catastrophic forgetting'').While this setup has enjoyed a lot of attention in the applied community, there hasn't be theoretical work that even formalizes the desired guarantees. In this paper, we propose a framework for continual learning through the framework of feature extraction---namely, one in which features, as well as a classifier, are being trained with each environment. When the features are linear, we design an efficient gradient-based algorithm $\mathsf{DPGrad}$, that is guaranteed to perform well on the current environment, as well as avoid catastrophic forgetting. In the general case, when the features are non-linear, we show such an algorithm cannot exist, whether efficient or not.
Author Information
Binghui Peng (Columbia University)
Andrej Risteski (CMU)
Assistant Professor in the ML department at CMU. Prior to that I was a Wiener Fellow at MIT, and prior to that finished my PhD at Princeton University.
More from the Same Authors
-
2021 Spotlight: Parametric Complexity Bounds for Approximating PDEs with Neural Networks »
Tanya Marwah · Zachary Lipton · Andrej Risteski -
2022 : Memory bounds for continual learning »
Binghui Peng · Xi Chen · Christos Papadimitriou -
2022 : Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient for Out-of-Distribution Generalization »
Elan Rosenfeld · Pradeep Ravikumar · Andrej Risteski -
2022 : Statistical Efficiency of Score Matching: The View from Isoperimetry »
Frederic Koehler · Alexander Heckett · Andrej Risteski -
2023 Poster: Provable benefits of score matching »
Chirag Pabbaraju · Dhruv Rohatgi · Anish Prasad Sevekari · Holden Lee · Ankur Moitra · Andrej Risteski -
2023 Poster: Deep Equilibrium Based Neural Operators for Steady-State PDEs »
Tanya Marwah · Ashwini Pokle · J. Zico Kolter · Zachary Lipton · Jianfeng Lu · Andrej Risteski -
2023 Poster: Provable benefits of annealing for estimating normalizing constants »
Omar Chehab · Aapo Hyvarinen · Andrej Risteski -
2023 Poster: (Un)interpretability of Transformers: a case study with Dyck grammars »
Kaiyue Wen · Yuchen Li · Bingbin Liu · Andrej Risteski -
2022 : Domain-Adjusted Regression or: ERM May Already Learn Features Sufficient for Out-of-Distribution Generalization »
Elan Rosenfeld · Pradeep Ravikumar · Andrej Risteski -
2022 Poster: Iterative Feature Matching: Toward Provable Domain Generalization with Logarithmic Environments »
Yining Chen · Elan Rosenfeld · Mark Sellke · Tengyu Ma · Andrej Risteski -
2022 Poster: Masked Prediction: A Parameter Identifiability View »
Bingbin Liu · Daniel Hsu · Pradeep Ravikumar · Andrej Risteski -
2021 Poster: Parametric Complexity Bounds for Approximating PDEs with Neural Networks »
Tanya Marwah · Zachary Lipton · Andrej Risteski -
2021 Poster: Dynamic influence maximization »
Binghui Peng -
2021 Poster: Universal Approximation Using Well-Conditioned Normalizing Flows »
Holden Lee · Chirag Pabbaraju · Anish Prasad Sevekari · Andrej Risteski -
2020 Poster: Hedging in games: Faster convergence of external and swap regrets »
Xi Chen · Binghui Peng -
2020 Spotlight: Hedging in games: Faster convergence of external and swap regrets »
Xi Chen · Binghui Peng -
2019 Poster: Adaptive Influence Maximization with Myopic Feedback »
Binghui Peng · Wei Chen