Timezone: »
While deep reinforcement learning has proven to be successful in solving control tasks, the ``black-box'' nature of an agent has received increasing concerns. We propose a prototype-based post-hoc \emph{policy explainer}, ProtoX, that explains a black-box agent by prototyping the agent's behaviors into scenarios, each represented by a prototypical state. When learning prototypes, ProtoX considers both visual similarity and scenario similarity. The latter is unique to the reinforcement learning context since it explains why the same action is taken in visually different states. To teach ProtoX about visual similarity, we pre-train an encoder using contrastive learning via self-supervised learning to recognize states as similar if they occur close together in time and receive the same action from the black-box agent. We then add an isometry layer to allow ProtoX to adapt scenario similarity to the downstream task. ProtoX is trained via imitation learning using behavior cloning, and thus requires no access to the environment or agent. In addition to explanation fidelity, we design different prototype shaping terms in the objective function to encourage better interpretability. We conduct various experiments to test ProtoX. Results show that ProtoX achieved high fidelity to the original black-box agent while providing meaningful and understandable explanations.
Author Information
Ronilo Ragodos (University of Iowa)
Tong Wang (University of Iowa)
Qihang Lin (University of Iowa)
Xun Zhou (University of Iowa)
More from the Same Authors
-
2022 Poster: Large-scale Optimization of Partial AUC in a Range of False Positive Rates »
Yao Yao · Qihang Lin · Tianbao Yang -
2020 Poster: Optimal Epoch Stochastic Gradient Descent Ascent Methods for Min-Max Optimization »
Yan Yan · Yi Xu · Qihang Lin · Wei Liu · Tianbao Yang -
2018 Poster: Multi-value Rule Sets for Interpretable Classification with Feature-Efficient Representations »
Tong Wang -
2018 Poster: Faster Online Learning of Optimal Threshold for Consistent F-measure Optimization »
Xiaoxuan Zhang · Mingrui Liu · Xun Zhou · Tianbao Yang -
2017 Poster: ADMM without a Fixed Penalty Parameter: Faster Convergence with New Adaptive Penalization »
Yi Xu · Mingrui Liu · Qihang Lin · Tianbao Yang -
2017 Poster: Adaptive SVRG Methods under Error Bound Conditions with Unknown Growth Parameter »
Yi Xu · Qihang Lin · Tianbao Yang