Timezone: »

 
Poster
Causal Inference with Non-IID Data using Linear Graphical Models
Chi Zhang · Karthika Mohan · Judea Pearl

Tue Nov 29 02:00 PM -- 04:00 PM (PST) @ Hall J #813

Traditional causal inference techniques assume data are independent and identically distributed (IID) and thus ignores interactions among units. However, a unit’s treatment may affect another unit's outcome (interference), a unit’s treatment may be correlated with another unit’s outcome, or a unit’s treatment and outcome may be spuriously correlated through another unit. To capture such nuances, we model the data generating process using causal graphs and conduct a systematic analysis of the bias caused by different types of interactions when computing causal effects. We derive theorems to detect and quantify the interaction bias, and derive conditions under which it is safe to ignore interactions. Put differently, we present conditions under which causal effects can be computed with negligible bias by assuming that samples are IID. Furthermore, we develop a method to eliminate bias in cases where blindly assuming IID is expected to yield a significantly biased estimate. Finally, we test the coverage and performance of our methods through simulations.

Author Information

Chi Zhang (UCLA)
Karthika Mohan (UC Berkeley)
Judea Pearl (UCLA)

Judea Pearl is a professor of computer science and statistics at UCLA. He is a graduate of the Technion, Israel, and has joined the faculty of UCLA in 1970, where he conducts research in artificial intelligence, causal inference and philosophy of science. Pearl has authored three books: Heuristics (1984), Probabilistic Reasoning (1988), and Causality (2000;2009), the latter won the Lakatos Prize from the London School of Economics. He is a member of the National Academy of Engineering, the American Academy of Arts and Sciences, and a Fellow of the IEEE, AAAI and the Cognitive Science Society. Pearl received the 2008 Benjamin Franklin Medal from the Franklin Institute and the 2011 Rumelhart Prize from the Cognitive Science Society. In 2012, he received the Technion's Harvey Prize and the ACM Alan M. Turing Award.

More from the Same Authors