Timezone: »
Poster
Fair Wrapping for Black-box Predictions
Alexander Soen · Ibrahim Alabdulmohsin · Sanmi Koyejo · Yishay Mansour · Nyalleng Moorosi · Richard Nock · Ke Sun · Lexing Xie
We introduce a new family of techniques to post-process (``wrap") a black-box classifier in order to reduce its bias. Our technique builds on the recent analysis of improper loss functions whose optimization can correct any twist in prediction, unfairness being treated as a twist. In the post-processing, we learn a wrapper function which we define as an $\alpha$-tree, which modifies the prediction. We provide two generic boosting algorithms to learn $\alpha$-trees. We show that our modification has appealing properties in terms of composition of $\alpha$-trees, generalization, interpretability, and KL divergence between modified and original predictions. We exemplify the use of our technique in three fairness notions: conditional value-at-risk, equality of opportunity, and statistical parity; and provide experiments on several readily available datasets.
Author Information
Alexander Soen (Australian National University)
Ibrahim Alabdulmohsin (Google)
Sanmi Koyejo (Stanford, Google Research)

Sanmi Koyejo is an Assistant Professor in the Department of Computer Science at the University of Illinois at Urbana-Champaign and a research scientist at Google AI in Accra. Koyejo's research interests are in developing the principles and practice of adaptive and robust machine learning. Additionally, Koyejo focuses on applications to biomedical imaging and neuroscience. Koyejo co-founded the Black in AI organization and currently serves on its board.
Yishay Mansour (Tel Aviv University & Google)
Nyalleng Moorosi (Google Ghana)
Richard Nock (Data61, the Australian National University and the University of Sydney)
Ke Sun (CSIRO's Data61 and Australian National University)
Lexing Xie (Australian National University)
More from the Same Authors
-
2021 Spotlight: Agnostic Reinforcement Learning with Low-Rank MDPs and Rich Observations »
Ayush Sekhari · Christoph Dann · Mehryar Mohri · Yishay Mansour · Karthik Sridharan -
2021 : Constructing a Visual Dataset to Study the Effects of Spatial Apartheid in South Africa »
Raesetje Sefala · Timnit Gebru · Luzango Mfupe · Nyalleng Moorosi · Richard Klein -
2021 : Probabilistic Performance Metric Elicitation »
Zachary Robertson · Hantao Zhang · Sanmi Koyejo -
2021 : Robust and Personalized Federated Learning with Spurious Features: an Adversarial Approach »
Xiaoyang Wang · Han Zhao · Klara Nahrstedt · Sanmi Koyejo -
2021 : RVFR: Robust Vertical Federated Learning via Feature Subspace Recovery »
Jing Liu · Chulin Xie · Krishnaram Kenthapadi · Sanmi Koyejo · Bo Li -
2021 : Secure Byzantine-Robust Distributed Learning via Clustering »
Raj Kiriti Velicheti · Sanmi Koyejo -
2021 : Exploiting Causal Chains for Domain Generalization »
Olawale Salaudeen · Sanmi Koyejo -
2021 : Distribution Preserving Bayesian Coresets using Set Constraints »
Shovik Guha · Rajiv Khanna · Sanmi Koyejo -
2021 : Factorized Fourier Neural Operators »
Alasdair Tran · Alexander Mathews · Lexing Xie · Cheng Soon Ong -
2022 : Metric Elicitation; Moving from Theory to Practice »
Safinah Ali · Sohini Upadhyay · Gaurush Hiranandani · Elena Glassman · Sanmi Koyejo -
2022 : A Theory of Learning with Competing Objectives and User Feedback »
Pranjal Awasthi · Corinna Cortes · Yishay Mansour · Mehryar Mohri -
2022 : A Theory of Learning with Competing Objectives and User Feedback »
Pranjal Awasthi · Corinna Cortes · Yishay Mansour · Mehryar Mohri -
2022 : Finding Safe Zones of Markov Decision Processes Policies »
Michal Moshkovitz · Lee Cohen · Yishay Mansour -
2022 : The Curse of Low Task Diversity: On the Failure of Transfer Learning to Outperform MAML and Their Empirical Equivalence »
Brando Miranda · Patrick Yu · Yu-Xiong Wang · Sanmi Koyejo -
2022 : Batch Active Learning from the Perspective of Sparse Approximation »
Maohao Shen · Yibo Jacky Zhang · Bowen Jiang · Sanmi Koyejo -
2023 Poster: Getting ViT in Shape: Scaling Laws for Compute-Optimal Model Design »
Ibrahim Alabdulmohsin · Lucas Beyer · Alexander Kolesnikov · Xiaohua Zhai -
2023 Poster: Patch n’ Pack: NaViT, a Vision Transformer for any Aspect Ratio and Resolution »
Mostafa Dehghani · Basil Mustafa · Josip Djolonga · Jonathan Heek · Matthias Minderer · Mathilde Caron · Andreas Steiner · Joan Puigcerver · Robert Geirhos · Ibrahim Alabdulmohsin · Avital Oliver · Piotr Padlewski · Alexey Gritsenko · Mario Lucic · Neil Houlsby -
2023 Poster: Boosting with Tempered Exponential Measures »
Richard Nock · Ehsan Amid · Manfred Warmuth -
2022 Spotlight: Lightning Talks 1A-4 »
Siwei Wang · Jing Liu · Nianqiao Ju · Shiqian Li · Eloïse Berthier · Muhammad Faaiz Taufiq · Arsene Fansi Tchango · Chen Liang · Chulin Xie · Jordan Awan · Jean-Francois Ton · Ziad Kobeissi · Wenguan Wang · Xinwang Liu · Kewen Wu · Rishab Goel · Jiaxu Miao · Suyuan Liu · Julien Martel · Ruobin Gong · Francis Bach · Chi Zhang · Rob Cornish · Sanmi Koyejo · Zhi Wen · Yee Whye Teh · Yi Yang · Jiaqi Jin · Bo Li · Yixin Zhu · Vinayak Rao · Wenxuan Tu · Gaetan Marceau Caron · Arnaud Doucet · Xinzhong Zhu · Joumana Ghosn · En Zhu -
2022 Spotlight: CoPur: Certifiably Robust Collaborative Inference via Feature Purification »
Jing Liu · Chulin Xie · Sanmi Koyejo · Bo Li -
2022 : Ethics Roundtable »
Negar Rostamzadeh · Sina Fazelpour · Nyalleng Moorosi -
2022 : A Theory of Learning with Competing Objectives and User Feedback »
Pranjal Awasthi · Corinna Cortes · Yishay Mansour · Mehryar Mohri -
2022 Poster: Benign Underfitting of Stochastic Gradient Descent »
Tomer Koren · Roi Livni · Yishay Mansour · Uri Sherman -
2022 Poster: Diagnosing failures of fairness transfer across distribution shift in real-world medical settings »
Jessica Schrouff · Natalie Harris · Sanmi Koyejo · Ibrahim Alabdulmohsin · Eva Schnider · Krista Opsahl-Ong · Alexander Brown · Subhrajit Roy · Diana Mincu · Christina Chen · Awa Dieng · Yuan Liu · Vivek Natarajan · Alan Karthikesalingam · Katherine Heller · Silvia Chiappa · Alexander D'Amour -
2022 Poster: A Characterization of Semi-Supervised Adversarially Robust PAC Learnability »
Idan Attias · Steve Hanneke · Yishay Mansour -
2022 Poster: Near-Optimal Regret for Adversarial MDP with Delayed Bandit Feedback »
Tiancheng Jin · Tal Lancewicki · Haipeng Luo · Yishay Mansour · Aviv Rosenberg -
2022 Poster: A Reduction to Binary Approach for Debiasing Multiclass Datasets »
Ibrahim Alabdulmohsin · Jessica Schrouff · Sanmi Koyejo -
2022 Poster: CoPur: Certifiably Robust Collaborative Inference via Feature Purification »
Jing Liu · Chulin Xie · Sanmi Koyejo · Bo Li -
2022 Poster: Revisiting Neural Scaling Laws in Language and Vision »
Ibrahim Alabdulmohsin · Behnam Neyshabur · Xiaohua Zhai -
2022 Poster: A Nonconvex Framework for Structured Dynamic Covariance Recovery »
Katherine Tsai · Mladen Kolar · Sanmi Koyejo -
2021 : Invited Talk 3 »
Nyalleng Moorosi · Razvan Amironesei -
2021 Poster: Minimax Regret for Stochastic Shortest Path »
Alon Cohen · Yonathan Efroni · Yishay Mansour · Aviv Rosenberg -
2021 Oral: Optimal Rates for Random Order Online Optimization »
Uri Sherman · Tomer Koren · Yishay Mansour -
2021 Poster: Optimal Rates for Random Order Online Optimization »
Uri Sherman · Tomer Koren · Yishay Mansour -
2021 Poster: Oracle-Efficient Regret Minimization in Factored MDPs with Unknown Structure »
Aviv Rosenberg · Yishay Mansour -
2021 Poster: Differentially Private Multi-Armed Bandits in the Shuffle Model »
Jay Tenenbaum · Haim Kaplan · Yishay Mansour · Uri Stemmer -
2021 Poster: ROI Maximization in Stochastic Online Decision-Making »
Nicolò Cesa-Bianchi · Tom Cesari · Yishay Mansour · Vianney Perchet -
2021 Poster: Agnostic Reinforcement Learning with Low-Rank MDPs and Rich Observations »
Ayush Sekhari · Christoph Dann · Mehryar Mohri · Yishay Mansour · Karthik Sridharan -
2021 Poster: On the Variance of the Fisher Information for Deep Learning »
Alexander Soen · Ke Sun -
2021 Poster: Dueling Bandits with Team Comparisons »
Lee Cohen · Ulrike Schmidt-Kraepelin · Yishay Mansour -
2020 : Harms from AI research »
Anna Lauren Hoffmann · Nyalleng Moorosi · Vinay Prabhu · Deborah Raji · Jacob Metcalf · Sherry Stanley -
2020 Poster: Quantile Propagation for Wasserstein-Approximate Gaussian Processes »
Rui Zhang · Christian Walder · Edwin Bonilla · Marian-Andrei Rizoiu · Lexing Xie -
2019 Poster: Disentangled behavioural representations »
Amir Dezfouli · Hassan Ashtiani · Omar Ghattas · Richard Nock · Peter Dayan · Cheng Soon Ong -
2019 Poster: A Primal-Dual link between GANs and Autoencoders »
Hisham Husain · Richard Nock · Robert Williamson -
2019 Tutorial: Representation Learning and Fairness »
Moustapha Cisse · Sanmi Koyejo -
2018 Poster: Representation Learning of Compositional Data »
Marta Avalos · Richard Nock · Cheng Soon Ong · Julien Rouar · Ke Sun -
2017 Workshop: Learning in the Presence of Strategic Behavior »
Nika Haghtalab · Yishay Mansour · Tim Roughgarden · Vasilis Syrgkanis · Jennifer Wortman Vaughan -
2017 Poster: f-GANs in an Information Geometric Nutshell »
Richard Nock · Zac Cranko · Aditya K Menon · Lizhen Qu · Robert Williamson -
2017 Poster: Submultiplicative Glivenko-Cantelli and Uniform Convergence of Revenues »
Noga Alon · Moshe Babaioff · Yannai A. Gonczarowski · Yishay Mansour · Shay Moran · Amir Yehudayoff -
2017 Spotlight: Submultiplicative Glivenko-Cantelli and Uniform Convergence of Revenues »
Noga Alon · Moshe Babaioff · Yannai A. Gonczarowski · Yishay Mansour · Shay Moran · Amir Yehudayoff -
2017 Spotlight: f-GANs in an Information Geometric Nutshell »
Richard Nock · Zac Cranko · Aditya K Menon · Lizhen Qu · Robert Williamson -
2017 Poster: Multi-Armed Bandits with Metric Movement Costs »
Tomer Koren · Roi Livni · Yishay Mansour -
2016 Poster: A scaled Bregman theorem with applications »
Richard Nock · Aditya Menon · Cheng Soon Ong -
2016 Poster: On Regularizing Rademacher Observation Losses »
Richard Nock -
2015 Workshop: Learning and privacy with incomplete data and weak supervision »
Giorgio Patrini · Tony Jebara · Richard Nock · Dimitrios Kotzias · Felix Xinnan Yu -
2014 Poster: (Almost) No Label No Cry »
Giorgio Patrini · Richard Nock · Tiberio Caetano · Paul Rivera -
2014 Spotlight: (Almost) No Label No Cry »
Giorgio Patrini · Richard Nock · Tiberio Caetano · Paul Rivera -
2008 Poster: On the Efficient Minimization of Classification Calibrated Surrogates »
Richard Nock · Frank NIELSEN -
2008 Spotlight: On the Efficient Minimization of Classification Calibrated Surrogates »
Richard Nock · Frank NIELSEN