Timezone: »
Poster
Truncated Matrix Power Iteration for Differentiable DAG Learning
Zhen Zhang · Ignavier Ng · Dong Gong · Yuhang Liu · Ehsan Abbasnejad · Mingming Gong · Kun Zhang · Javen Qinfeng Shi
Recovering underlying Directed Acyclic Graph (DAG) structures from observational data is highly challenging due to the combinatorial nature of the DAG-constrained optimization problem. Recently, DAG learning has been cast as a continuous optimization problem by characterizing the DAG constraint as a smooth equality one, generally based on polynomials over adjacency matrices. Existing methods place very small coefficients on high-order polynomial terms for stabilization, since they argue that large coefficients on the higher-order terms are harmful due to numeric exploding. On the contrary, we discover that large coefficients on higher-order terms are beneficial for DAG learning, when the spectral radiuses of the adjacency matrices are small, and that larger coefficients for higher-order terms can approximate the DAG constraints much better than the small counterparts. Based on this, we propose a novel DAG learning method with efficient truncated matrix power iteration to approximate geometric series based DAG constraints. Empirically, our DAG learning method outperforms the previous state-of-the-arts in various settings, often by a factor of $3$ or more in terms of structural Hamming distance.
Author Information
Zhen Zhang (University of Adelaide)
Ignavier Ng (Carnegie Mellon University)
Dong Gong (The University of New South Wales)
Yuhang Liu (The University of Adelaide)
Ehsan Abbasnejad (University of Adelaide)
Mingming Gong (University of Melbourne)
Kun Zhang (CMU & MBZUAI)
Javen Qinfeng Shi (University of Adelaide)
More from the Same Authors
-
2022 : Tier Balancing: Towards Dynamic Fairness over Underlying Causal Factors »
Zeyu Tang · Yatong Chen · Yang Liu · Kun Zhang -
2022 : Scalable Causal Discovery with Score Matching »
Francesco Montagna · Nicoletta Noceti · Lorenzo Rosasco · Kun Zhang · Francesco Locatello -
2023 Poster: Generator Identification for Linear SDEs with Additive and Multiplicative Noise »
Yuanyuan Wang · Xi Geng · Wei Huang · Biwei Huang · Mingming Gong -
2023 Poster: ConDaFormer: Disassembled Transformer with Local Structure Enhancement for 3D Point Cloud Understanding »
Lunhao Duan · Shanshan Zhao · Nan Xue · Mingming Gong · Gui-Song Xia · Dacheng Tao -
2023 Poster: On the Identifiability of Sparse ICA without Assuming Non-Gaussianity »
Ignavier Ng · Yujia Zheng · Xinshuai Dong · Kun Zhang -
2023 Poster: NPCL: Neural Processes for Uncertainty-Aware Continual Learning »
Saurav Jha · Dong Gong · He Zhao · Lina Yao -
2023 Poster: Semi-Implicit Denoising Diffusion Models (SIDDMs) »
yanwu xu · Mingming Gong · Shaoan Xie · Wei Wei · Matthias Grundmann · Kayhan Batmanghelich · Tingbo Hou -
2023 Poster: Generalizing Nonlinear ICA Beyond Structural Sparsity »
Yujia Zheng · Kun Zhang -
2023 Poster: Counterfactual Generation with Identifiability Guarantee »
hanqi yan · Lingjing Kong · Lin Gui · Yuejie Chi · Eric Xing · Yulan He · Kun Zhang -
2023 Poster: RanPAC: Random Projections and Pre-trained Models for Continual Learning »
Mark McDonnell · Dong Gong · Amin Parvaneh · Ehsan Abbasnejad · Anton van den Hengel -
2023 Poster: Temporally Disentangled Representation Learning under Unknown Nonstationarity »
Xiangchen Song · Weiran Yao · Yewen Fan · Xinshuai Dong · Guangyi Chen · Juan Carlos Niebles · Eric Xing · Kun Zhang -
2023 Poster: Identification of Nonlinear Latent Hierarchical Models »
Lingjing Kong · Biwei Huang · Feng Xie · Eric Xing · Yuejie Chi · Kun Zhang -
2023 Poster: CS-Isolate: Extracting Hard Confident Examples by Content and Style Isolation »
Yexiong Lin · Yu Yao · Xiaolong Shi · Mingming Gong · Xu Shen · Dong Xu · Tongliang Liu -
2023 Poster: ID and OOD Performance Are Sometimes Inversely Correlated on Real-world Datasets »
Damien Teney · Yong Lin · Seong Joon Oh · Ehsan Abbasnejad -
2023 Poster: Subspace Identification for Multi-Source Domain Adaptation »
Zijian Li · Ruichu Cai · Guangyi Chen · Boyang Sun · Zhifeng Hao · Kun Zhang -
2023 Poster: Learning World Models with Identifiable Factorization »
Yuren Liu · Biwei Huang · Zhengmao Zhu · Honglong Tian · Mingming Gong · Yang Yu · Kun Zhang -
2022 Spotlight: Latent Hierarchical Causal Structure Discovery with Rank Constraints »
Biwei Huang · Charles Jia Han Low · Feng Xie · Clark Glymour · Kun Zhang -
2022 : Kun Zhang: Causal Principles Meet Deep Learning: Successes and Challenges. »
Kun Zhang -
2022 : Kun Zhang: Causal Principles Meet Deep Learning: Successes and Challenges. »
Kun Zhang -
2022 Workshop: Causal Machine Learning for Real-World Impact »
Nick Pawlowski · Jeroen Berrevoets · Caroline Uhler · Kun Zhang · Mihaela van der Schaar · Cheng Zhang -
2022 Poster: On the Identifiability of Nonlinear ICA: Sparsity and Beyond »
Yujia Zheng · Ignavier Ng · Kun Zhang -
2022 Poster: Independence Testing-Based Approach to Causal Discovery under Measurement Error and Linear Non-Gaussian Models »
Haoyue Dai · Peter Spirtes · Kun Zhang -
2022 Poster: Latent Hierarchical Causal Structure Discovery with Rank Constraints »
Biwei Huang · Charles Jia Han Low · Feng Xie · Clark Glymour · Kun Zhang -
2022 Poster: MissDAG: Causal Discovery in the Presence of Missing Data with Continuous Additive Noise Models »
Erdun Gao · Ignavier Ng · Mingming Gong · Li Shen · Wei Huang · Tongliang Liu · Kun Zhang · Howard Bondell -
2022 Poster: Causal Discovery in Linear Latent Variable Models Subject to Measurement Error »
Yuqin Yang · AmirEmad Ghassami · Mohamed Nafea · Negar Kiyavash · Kun Zhang · Ilya Shpitser -
2022 Poster: Unsupervised Image-to-Image Translation with Density Changing Regularization »
Shaoan Xie · Qirong Ho · Kun Zhang -
2022 Poster: Factored Adaptation for Non-Stationary Reinforcement Learning »
Fan Feng · Biwei Huang · Kun Zhang · Sara Magliacane -
2022 Poster: Counterfactual Fairness with Partially Known Causal Graph »
Aoqi Zuo · Susan Wei · Tongliang Liu · Bo Han · Kun Zhang · Mingming Gong -
2022 Poster: Temporally Disentangled Representation Learning »
Weiran Yao · Guangyi Chen · Kun Zhang -
2021 Poster: Reliable Causal Discovery with Improved Exact Search and Weaker Assumptions »
Ignavier Ng · Yujia Zheng · Jiji Zhang · Kun Zhang -
2020 : Oral: Ignavier Ng »
Ignavier Ng -
2020 Workshop: Causal Discovery and Causality-Inspired Machine Learning »
Biwei Huang · Sara Magliacane · Kun Zhang · Danielle Belgrave · Elias Bareinboim · Daniel Malinsky · Thomas Richardson · Christopher Meek · Peter Spirtes · Bernhard Schölkopf -
2020 Poster: Dual T: Reducing Estimation Error for Transition Matrix in Label-noise Learning »
Yu Yao · Tongliang Liu · Bo Han · Mingming Gong · Jiankang Deng · Gang Niu · Masashi Sugiyama -
2020 Poster: Part-dependent Label Noise: Towards Instance-dependent Label Noise »
Xiaobo Xia · Tongliang Liu · Bo Han · Nannan Wang · Mingming Gong · Haifeng Liu · Gang Niu · Dacheng Tao · Masashi Sugiyama -
2020 Spotlight: Part-dependent Label Noise: Towards Instance-dependent Label Noise »
Xiaobo Xia · Tongliang Liu · Bo Han · Nannan Wang · Mingming Gong · Haifeng Liu · Gang Niu · Dacheng Tao · Masashi Sugiyama -
2020 Poster: On the Role of Sparsity and DAG Constraints for Learning Linear DAGs »
Ignavier Ng · AmirEmad Ghassami · Kun Zhang -
2020 Poster: Factor Graph Neural Networks »
Zhen Zhang · Fan Wu · Wee Sun Lee -
2020 Poster: Counterfactual Vision-and-Language Navigation: Unravelling the Unseen »
Amin Parvaneh · Ehsan Abbasnejad · Damien Teney · Javen Qinfeng Shi · Anton van den Hengel -
2020 Spotlight: Counterfactual Vision-and-Language Navigation: Unravelling the Unseen »
Amin Parvaneh · Ehsan Abbasnejad · Damien Teney · Javen Qinfeng Shi · Anton van den Hengel -
2020 Poster: Hard Example Generation by Texture Synthesis for Cross-domain Shape Similarity Learning »
Huan Fu · Shunming Li · Rongfei Jia · Mingming Gong · Binqiang Zhao · Dacheng Tao -
2020 Poster: Domain Adaptation as a Problem of Inference on Graphical Models »
Kun Zhang · Mingming Gong · Petar Stojanov · Biwei Huang · QINGSONG LIU · Clark Glymour -
2020 Poster: On the Value of Out-of-Distribution Testing: An Example of Goodhart's Law »
Damien Teney · Ehsan Abbasnejad · Kushal Kafle · Robik Shrestha · Christopher Kanan · Anton van den Hengel -
2020 Poster: Domain Generalization via Entropy Regularization »
Shanshan Zhao · Mingming Gong · Tongliang Liu · Huan Fu · Dacheng Tao -
2019 : Coffee break, posters, and 1-on-1 discussions »
Julius von Kügelgen · David Rohde · Candice Schumann · Grace Charles · Victor Veitch · Vira Semenova · Mert Demirer · Vasilis Syrgkanis · Suraj Nair · Aahlad Puli · Masatoshi Uehara · Aditya Gopalan · Yi Ding · Ignavier Ng · Khashayar Khosravi · Eli Sherman · Shuxi Zeng · Aleksander Wieczorek · Hao Liu · Kyra Gan · Jason Hartford · Miruna Oprescu · Alexander D'Amour · Jörn Boehnke · Yuta Saito · Théophile Griveau-Billion · Chirag Modi · Shyngys Karimov · Jeroen Berrevoets · Logan Graham · Imke Mayer · Dhanya Sridhar · Issa Dahabreh · Alan Mishler · Duncan Wadsworth · Khizar Qureshi · Rahul Ladhania · Gota Morishita · Paul Welle -
2017 Poster: Learning Causal Structures Using Regression Invariance »
AmirEmad Ghassami · Saber Salehkaleybar · Negar Kiyavash · Kun Zhang