Timezone: »
Poster
Improving Generative Adversarial Networks via Adversarial Learning in Latent Space
Yang Li · Yichuan Mo · Liangliang Shi · Junchi Yan
@
For Generative Adversarial Networks which map a latent distribution to the target distribution, in this paper, we study how the sampling in latent space can affect the generation performance, especially for images. We observe that, as the neural generator is a continuous function, two close samples in latent space would be mapped into two nearby images, while their quality can differ much as the quality generally does not exhibit a continuous nature in pixel space. From such a continuous mapping function perspective, it is also possible that two distant latent samples can be mapped into two close images (if not exactly the same). In particular, if the latent samples are mapped in aggregation into a single mode, mode collapse occurs. Accordingly, we propose adding an implicit latent transform before the mapping function to improve latent $z$ from its initial distribution, e.g., Gaussian. This is achieved using well-developed adversarial sample mining techniques, e.g. iterative fast gradient sign method (I-FGSM). We further propose new GAN training pipelines to obtain better generative mappings w.r.t quality and diversity by introducing targeted latent transforms into the bi-level optimization of GAN. Experimental results on visual data show that our method can effectively achieve improvement in both quality and diversity.
Author Information
Yang Li (Shanghai Jiao Tong University)
Yichuan Mo (Peking University)
Liangliang Shi (Shanghai Jiao Tong University)
Junchi Yan (Shanghai Jiao Tong University)
More from the Same Authors
-
2022 Poster: When Adversarial Training Meets Vision Transformers: Recipes from Training to Architecture »
Yichuan Mo · Dongxian Wu · Yifei Wang · Yiwen Guo · Yisen Wang -
2022 Poster: ZARTS: On Zero-order Optimization for Neural Architecture Search »
Xiaoxing Wang · Wenxuan Guo · Jianlin Su · Xiaokang Yang · Junchi Yan -
2022 Poster: Learning Substructure Invariance for Out-of-Distribution Molecular Representations »
Nianzu Yang · Kaipeng Zeng · Qitian Wu · Xiaosong Jia · Junchi Yan -
2022 Spotlight: Lightning Talks 6A-2 »
Yichuan Mo · Botao Yu · Gang Li · Zezhong Xu · Haoran Wei · Arsene Fansi Tchango · Raef Bassily · Haoyu Lu · Qi Zhang · Songming Liu · Mingyu Ding · Peiling Lu · Yifei Wang · Xiang Li · Dongxian Wu · Ping Guo · Wen Zhang · Hao Zhongkai · Mehryar Mohri · Rishab Goel · Yisen Wang · Yifei Wang · Yangguang Zhu · Zhi Wen · Ananda Theertha Suresh · Chengyang Ying · Yujie Wang · Peng Ye · Rui Wang · Nanyi Fei · Hui Chen · Yiwen Guo · Wei Hu · Chenglong Liu · Julien Martel · Yuqi Huo · Wu Yichao · Hang Su · Yisen Wang · Peng Wang · Huajun Chen · Xu Tan · Jun Zhu · Ding Liang · Zhiwu Lu · Joumana Ghosn · Shanshan Zhang · Wei Ye · Ze Cheng · Shikun Zhang · Tao Qin · Tie-Yan Liu -
2022 Spotlight: When Adversarial Training Meets Vision Transformers: Recipes from Training to Architecture »
Yichuan Mo · Dongxian Wu · Yifei Wang · Yiwen Guo · Yisen Wang -
2022 Spotlight: Lightning Talks 5B-3 »
Yanze Wu · Jie Xiao · Nianzu Yang · Jieyi Bi · Jian Yao · Yiting Chen · Qizhou Wang · Yangru Huang · Yongqiang Chen · Peixi Peng · Yuxin Hong · Xintao Wang · Feng Liu · Yining Ma · Qibing Ren · Xueyang Fu · Yonggang Zhang · Kaipeng Zeng · Jiahai Wang · GEN LI · Yonggang Zhang · Qitian Wu · Yifan Zhao · Chiyu Wang · Junchi Yan · Feng Wu · Yatao Bian · Xiaosong Jia · Ying Shan · Zhiguang Cao · Zheng-Jun Zha · Guangyao Chen · Tianjun Xiao · Han Yang · Jing Zhang · Jinbiao Chen · MA Kaili · Yonghong Tian · Junchi Yan · Chen Gong · Tong He · Binghui Xie · Yuan Sun · Francesco Locatello · Tongliang Liu · Yeow Meng Chee · David P Wipf · Tongliang Liu · Bo Han · Bo Han · Yanwei Fu · James Cheng · Zheng Zhang -
2022 Spotlight: Lightning Talks 5A-2 »
Qiang LI · Zhiwei Xu · Jiaqi Yang · Thai Hung Le · Haoxuan Qu · Yang Li · Artyom Sorokin · Peirong Zhang · Mira Finkelstein · Nitsan levy · Chung-Yiu Yau · dapeng li · Thommen Karimpanal George · De-Chuan Zhan · Nazar Buzun · Jiajia Jiang · Li Xu · Yichuan Mo · Yujun Cai · Yuliang Liu · Leonid Pugachev · Bin Zhang · Lucy Liu · Hoi-To Wai · Liangliang Shi · Majid Abdolshah · Yoav Kolumbus · Lin Geng Foo · Junchi Yan · Mikhail Burtsev · Lianwen Jin · Yuan Zhan · Dung Nguyen · David Parkes · Yunpeng Baiia · Jun Liu · Kien Do · Guoliang Fan · Jeffrey S Rosenschein · Sunil Gupta · Sarah Keren · Svetha Venkatesh -
2022 Spotlight: Improving Generative Adversarial Networks via Adversarial Learning in Latent Space »
Yang Li · Yichuan Mo · Liangliang Shi · Junchi Yan -
2022 Spotlight: Learning Substructure Invariance for Out-of-Distribution Molecular Representations »
Nianzu Yang · Kaipeng Zeng · Qitian Wu · Xiaosong Jia · Junchi Yan -
2022 Spotlight: Rethinking and Improving Robustness of Convolutional Neural Networks: a Shapley Value-based Approach in Frequency Domain »
Yiting Chen · Qibing Ren · Junchi Yan -
2022 Spotlight: NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification »
Qitian Wu · Wentao Zhao · Zenan Li · David P Wipf · Junchi Yan -
2022 Spotlight: Lightning Talks 1B-1 »
Qitian Wu · Runlin Lei · Rongqin Chen · Luca Pinchetti · Yangze Zhou · Abhinav Kumar · Hans Hao-Hsun Hsu · Wentao Zhao · Chenhao Tan · Zhen Wang · Shenghui Zhang · Yuesong Shen · Tommaso Salvatori · Gitta Kutyniok · Zenan Li · Amit Sharma · Leong Hou U · Yordan Yordanov · Christian Tomani · Bruno Ribeiro · Yaliang Li · David P Wipf · Daniel Cremers · Bolin Ding · Beren Millidge · Ye Li · Yuhang Song · Junchi Yan · Zhewei Wei · Thomas Lukasiewicz -
2022 Poster: NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification »
Qitian Wu · Wentao Zhao · Zenan Li · David P Wipf · Junchi Yan -
2022 Poster: Geometric Knowledge Distillation: Topology Compression for Graph Neural Networks »
Chenxiao Yang · Qitian Wu · Junchi Yan -
2022 Poster: Rethinking and Improving Robustness of Convolutional Neural Networks: a Shapley Value-based Approach in Frequency Domain »
Yiting Chen · Qibing Ren · Junchi Yan -
2022 Poster: GraphDE: A Generative Framework for Debiased Learning and Out-of-Distribution Detection on Graphs »
Zenan Li · Qitian Wu · Fan Nie · Junchi Yan -
2022 Poster: The Policy-gradient Placement and Generative Routing Neural Networks for Chip Design »
Ruoyu Cheng · Xianglong Lyu · Yang Li · Junjie Ye · Jianye Hao · Junchi Yan -
2022 Poster: Towards Out-of-Distribution Sequential Event Prediction: A Causal Treatment »
Chenxiao Yang · Qitian Wu · Qingsong Wen · Zhiqiang Zhou · Liang Sun · Junchi Yan -
2022 Poster: Trajectory-guided Control Prediction for End-to-end Autonomous Driving: A Simple yet Strong Baseline »
Penghao Wu · Xiaosong Jia · Li Chen · Junchi Yan · Hongyang Li · Yu Qiao -
2022 Poster: GraphQNTK: Quantum Neural Tangent Kernel for Graph Data »
Yehui Tang · Junchi Yan -
2020 Poster: Graduated Assignment for Joint Multi-Graph Matching and Clustering with Application to Unsupervised Graph Matching Network Learning »
Runzhong Wang · Junchi Yan · Xiaokang Yang -
2020 Poster: The Diversified Ensemble Neural Network »
Shaofeng Zhang · Meng Liu · Junchi Yan -
2020 Poster: Adversarial Learning for Robust Deep Clustering »
Xu Yang · Cheng Deng · Kun Wei · Junchi Yan · Wei Liu -
2019 Poster: Learning Latent Process from High-Dimensional Event Sequences via Efficient Sampling »
Qitian Wu · Zixuan Zhang · Xiaofeng Gao · Junchi Yan · Guihai Chen -
2018 Poster: Generalizing Graph Matching beyond Quadratic Assignment Model »
Tianshu Yu · Junchi Yan · Yilin Wang · Wei Liu · baoxin Li