Timezone: »
We present a novel method for guaranteeing linear momentum in learned physics simulations. Unlike existing methods, we enforce conservation of momentum with a hard constraint, which we realize via antisymmetrical continuous convolutional layers. We combine these strict constraints with a hierarchical network architecture, a carefully constructed resampling scheme, and a training approach for temporal coherence. In combination, the proposed method allows us to increase the physical accuracy of the learned simulator substantially. In addition, the induced physical bias leads to significantly better generalization performance and makes our method more reliable in unseen test cases. We evaluate our method on a range of different, challenging fluid scenarios. Among others, we demonstrate that our approach generalizes to new scenarios with up to one million particles. Our results show that the proposed algorithm can learn complex dynamics while outperforming existing approaches in generalization and training performance. An implementation of our approach is available at https://github.com/tum-pbs/DMCF.
Author Information
Lukas Prantl (Technical University of Munich)
Benjamin Ummenhofer (Intel)
Vladlen Koltun (Apple)
Nils Thuerey (Technical University of Munich)
More from the Same Authors
-
2021 Spotlight: Habitat 2.0: Training Home Assistants to Rearrange their Habitat »
Andrew Szot · Alexander Clegg · Eric Undersander · Erik Wijmans · Yili Zhao · John Turner · Noah Maestre · Mustafa Mukadam · Devendra Singh Chaplot · Oleksandr Maksymets · Aaron Gokaslan · Vladimír Vondruš · Sameer Dharur · Franziska Meier · Wojciech Galuba · Angel Chang · Zsolt Kira · Vladlen Koltun · Jitendra Malik · Manolis Savva · Dhruv Batra -
2022 : Leveraging the Stochastic Predictions of Bayesian Neural Networks for Fluid Simulations »
Maximilian Mueller · Robin Greif · Frank Jenko · Nils Thuerey -
2022 : Learning Similarity Metrics for Volumetric Simulations with Multiscale CNNs »
Georg Kohl · Liwei Chen · Nils Thuerey -
2022 : Score Matching via Differentiable Physics »
Benjamin Holzschuh · Simona Vegetti · Nils Thuerey -
2022 Poster: Scale-invariant Learning by Physics Inversion »
Philipp Holl · Vladlen Koltun · Nils Thuerey -
2022 Poster: Domain Generalization without Excess Empirical Risk »
Ozan Sener · Vladlen Koltun -
2022 Poster: ULNeF: Untangled Layered Neural Fields for Mix-and-Match Virtual Try-On »
Igor Santesteban · Miguel Otaduy · Nils Thuerey · Dan Casas -
2022 Poster: Non-deep Networks »
Ankit Goyal · Alexey Bochkovskiy · Jia Deng · Vladlen Koltun -
2021 : Habitat 2.0: Training Home Assistants to Rearrange their Habitat »
Andrew Szot · Alexander Clegg · Eric Undersander · Erik Wijmans · Yili Zhao · Noah Maestre · Mustafa Mukadam · Oleksandr Maksymets · Aaron Gokaslan · Sameer Dharur · Franziska Meier · Wojciech Galuba · Angel Chang · Zsolt Kira · Vladlen Koltun · Jitendra Malik · Manolis Savva · Dhruv Batra -
2021 : Nils Thuerey »
Nils Thuerey -
2021 : Habitat 2.0: Training Home Assistants to Rearrange their Habitat »
Andrew Szot · Alexander Clegg · Eric Undersander · Erik Wijmans · Yili Zhao · Noah Maestre · Mustafa Mukadam · Oleksandr Maksymets · Aaron Gokaslan · Sameer Dharur · Franziska Meier · Wojciech Galuba · Angel Chang · Zsolt Kira · Vladlen Koltun · Jitendra Malik · Manolis Savva · Dhruv Batra -
2021 Poster: Geometry Processing with Neural Fields »
Guandao Yang · Serge Belongie · Bharath Hariharan · Vladlen Koltun -
2021 Poster: Habitat 2.0: Training Home Assistants to Rearrange their Habitat »
Andrew Szot · Alexander Clegg · Eric Undersander · Erik Wijmans · Yili Zhao · John Turner · Noah Maestre · Mustafa Mukadam · Devendra Singh Chaplot · Oleksandr Maksymets · Aaron Gokaslan · Vladimír Vondruš · Sameer Dharur · Franziska Meier · Wojciech Galuba · Angel Chang · Zsolt Kira · Vladlen Koltun · Jitendra Malik · Manolis Savva · Dhruv Batra -
2021 Poster: Differentiable Simulation of Soft Multi-body Systems »
Yi-Ling Qiao · Junbang Liang · Vladlen Koltun · Ming Lin -
2020 : Liwei Chen - Deep Learning Surrogates for Computational Fluid Dynamics »
Nils Thuerey -
2020 : Nils Thuerey - Lead the Way! Deep Learning via Differentiable Simulations »
Nils Thuerey -
2020 : Oral 01: phiflow - A differentiable PDE solving framework for deep learning via physical simulations »
Nils Thuerey -
2020 Poster: Solver-in-the-Loop: Learning from Differentiable Physics to Interact with Iterative PDE-Solvers »
Kiwon Um · Robert Brand · Yun (Raymond) Fei · Philipp Holl · Nils Thuerey -
2019 : Morning Coffee Break & Poster Session »
Eric Metodiev · Keming Zhang · Markus Stoye · Randy Churchill · Soumalya Sarkar · Miles Cranmer · Johann Brehmer · Danilo Jimenez Rezende · Peter Harrington · AkshatKumar Nigam · Nils Thuerey · Lukasz Maziarka · Alvaro Sanchez Gonzalez · Atakan Okan · James Ritchie · N. Benjamin Erichson · Harvey Cheng · Peihong Jiang · Seong Ho Pahng · Samson Koelle · Sami Khairy · Adrian Pol · Rushil Anirudh · Jannis Born · Benjamin Sanchez-Lengeling · Brian Timar · Rhys Goodall · Tamás Kriváchy · Lu Lu · Thomas Adler · Nathaniel Trask · Noëlie Cherrier · Tomohiko Konno · Muhammad Kasim · Tobias Golling · Zaccary Alperstein · Andrei Ustyuzhanin · James Stokes · Anna Golubeva · Ian Char · Ksenia Korovina · Youngwoo Cho · Chanchal Chatterjee · Tom Westerhout · Gorka Muñoz-Gil · Juan Zamudio-Fernandez · Jennifer Wei · Brian Lee · Johannes Kofler · Bruce Power · Nikita Kazeev · Andrey Ustyuzhanin · Artem Maevskiy · Pascal Friederich · Arash Tavakoli · Willie Neiswanger · Bohdan Kulchytskyy · sindhu hari · Paul Leu · Paul Atzberger -
2018 : Coffee Break 1 (Posters) »
Ananya Kumar · Siyu Huang · Huazhe Xu · Michael Janner · Parth Chadha · Nils Thuerey · Peter Lu · Maria Bauza · Anthony Tompkins · Guanya Shi · Thomas Baumeister · André Ofner · Zhi-Qi Cheng · Yuping Luo · Deepika Bablani · Jeroen Vanbaar · Kartic Subr · Tatiana López-Guevara · Devesh Jha · Fabian Fuchs · Stefano Rosa · Alison Pouplin · Alex Ray · Qi Liu · Eric Crawford -
2018 Poster: Combinatorial Optimization with Graph Convolutional Networks and Guided Tree Search »
Zhuwen Li · Qifeng Chen · Vladlen Koltun -
2018 Poster: Multi-Task Learning as Multi-Objective Optimization »
Ozan Sener · Vladlen Koltun