Timezone: »
Heterogeneous graph neural networks (GNNs) achieve strong performance on node classification tasks in a semi-supervised learning setting. However, as in the simpler homogeneous GNN case, message-passing-based heterogeneous GNNs may struggle to balance between resisting the oversmoothing that may occur in deep models, and capturing long-range dependencies of graph structured data. Moreover, the complexity of this trade-off is compounded in the heterogeneous graph case due to the disparate heterophily relationships between nodes of different types. To address these issues, we propose a novel heterogeneous GNN architecture in which layers are derived from optimization steps that descend a novel relation-aware energy function. The corresponding minimizer is fully differentiable with respect to the energy function parameters, such that bilevel optimization can be applied to effectively learn a functional form whose minimum provides optimal node representations for subsequent classification tasks. In particular, this methodology allows us to model diverse heterophily relationships between different node types while avoiding oversmoothing effects. Experimental results on 8 heterogeneous graph benchmarks demonstrates that our proposed method can achieve competitive node classification accuracy.
Author Information
Hongjoon Ahn (Seoul National University)
Yongyi Yang (University of Michigan)
Quan Gan (New York University)
Taesup Moon (Seoul National University (SNU))
Taesup Moon is currently an associate professor at Seoul National University (SNU), Korea. Prior to joining SNU in 2021, he was an associate professor at Sungkyunkwan University (SKKU) from 2017 to 2021, an assistant professor at DGIST from 2015 to 2017, a research staff member at Samsung Advanced Institute of Technology (SAIT) from 2013 to 2015, a postdoctoral researcher at UC Berkeley, Statistics from 2012 to 2013, and a research scientist at Yahoo! Labs from 2008 to 2012. He got his Ph.D. and MS degrees in Electrical Engineering from Stanford University, CA USA in 2008 and 2004, respectively, and his BS degree in Electrical Engineering from Seoul National University, Korea in 2002. His research interests are in deep learning, statistical machine learning, data science, signal processing, and information theory.
David P Wipf (AWS)
More from the Same Authors
-
2021 : A Closer Look at Distribution Shifts and Out-of-Distribution Generalization on Graphs »
Mucong Ding · Kezhi Kong · Jiuhai Chen · John Kirchenbauer · Micah Goldblum · David P Wipf · Furong Huang · Tom Goldstein -
2022 Poster: Learning Enhanced Representation for Tabular Data via Neighborhood Propagation »
Kounianhua Du · Weinan Zhang · Ruiwen Zhou · Yangkun Wang · Xilong Zhao · Jiarui Jin · Quan Gan · Zheng Zhang · David P Wipf -
2022 : Are Neurons Actually Collapsed? On the Fine-Grained Structure in Neural Representations »
Yongyi Yang · Jacob Steinhardt · Wei Hu -
2022 Spotlight: Lightning Talks 5B-3 »
Yanze Wu · Jie Xiao · Nianzu Yang · Jieyi Bi · Jian Yao · Yiting Chen · Qizhou Wang · Yangru Huang · Yongqiang Chen · Peixi Peng · Yuxin Hong · Xintao Wang · Feng Liu · Yining Ma · Qibing Ren · Xueyang Fu · Yonggang Zhang · Kaipeng Zeng · Jiahai Wang · GEN LI · Yonggang Zhang · Qitian Wu · Yifan Zhao · Chiyu Wang · Junchi Yan · Feng Wu · Yatao Bian · Xiaosong Jia · Ying Shan · Zhiguang Cao · Zheng-Jun Zha · Guangyao Chen · Tianjun Xiao · Han Yang · Jing Zhang · Jinbiao Chen · MA Kaili · Yonghong Tian · Junchi Yan · Chen Gong · Tong He · Binghui Xie · Yuan Sun · Francesco Locatello · Tongliang Liu · Yeow Meng Chee · David P Wipf · Tongliang Liu · Bo Han · Bo Han · Yanwei Fu · James Cheng · Zheng Zhang -
2022 Spotlight: Self-supervised Amodal Video Object Segmentation »
Jian Yao · Yuxin Hong · Chiyu Wang · Tianjun Xiao · Tong He · Francesco Locatello · David P Wipf · Yanwei Fu · Zheng Zhang -
2022 Spotlight: NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification »
Qitian Wu · Wentao Zhao · Zenan Li · David P Wipf · Junchi Yan -
2022 Spotlight: Lightning Talks 1B-1 »
Qitian Wu · Runlin Lei · Rongqin Chen · Luca Pinchetti · Yangze Zhou · Abhinav Kumar · Hans Hao-Hsun Hsu · Wentao Zhao · Chenhao Tan · Zhen Wang · Shenghui Zhang · Yuesong Shen · Tommaso Salvatori · Gitta Kutyniok · Zenan Li · Amit Sharma · Leong Hou U · Yordan Yordanov · Christian Tomani · Bruno Ribeiro · Yaliang Li · David P Wipf · Daniel Cremers · Bolin Ding · Beren Millidge · Ye Li · Yuhang Song · Junchi Yan · Zhewei Wei · Thomas Lukasiewicz -
2022 Poster: NodeFormer: A Scalable Graph Structure Learning Transformer for Node Classification »
Qitian Wu · Wentao Zhao · Zenan Li · David P Wipf · Junchi Yan -
2022 Poster: Transformers from an Optimization Perspective »
Yongyi Yang · zengfeng Huang · David P Wipf -
2022 Poster: Self-supervised Amodal Video Object Segmentation »
Jian Yao · Yuxin Hong · Chiyu Wang · Tianjun Xiao · Tong He · Francesco Locatello · David P Wipf · Yanwei Fu · Zheng Zhang -
2022 Poster: Learning Manifold Dimensions with Conditional Variational Autoencoders »
Yijia Zheng · Tong He · Yixuan Qiu · David P Wipf -
2021 : A Closer Look at Distribution Shifts and Out-of-Distribution Generalization on Graphs »
Mucong Ding · Kezhi Kong · Jiuhai Chen · John Kirchenbauer · Micah Goldblum · David P Wipf · Furong Huang · Tom Goldstein -
2021 Poster: A Biased Graph Neural Network Sampler with Near-Optimal Regret »
Qingru Zhang · David Wipf · Quan Gan · Le Song -
2021 Poster: SSUL: Semantic Segmentation with Unknown Label for Exemplar-based Class-Incremental Learning »
Sungmin Cha · beomyoung kim · YoungJoon Yoo · Taesup Moon -
2020 Poster: Further Analysis of Outlier Detection with Deep Generative Models »
Ziyu Wang · Bin Dai · David P Wipf · Jun Zhu -
2020 Poster: Continual Learning with Node-Importance based Adaptive Group Sparse Regularization »
Sangwon Jung · Hongjoon Ahn · Sungmin Cha · Taesup Moon -
2019 Poster: Uncertainty-based Continual Learning with Adaptive Regularization »
Hongjoon Ahn · Sungmin Cha · Donggyu Lee · Taesup Moon -
2019 Poster: Fooling Neural Network Interpretations via Adversarial Model Manipulation »
Juyeon Heo · Sunghwan Joo · Taesup Moon -
2016 Poster: Neural Universal Discrete Denoiser »
Taesup Moon · Seonwoo Min · Byunghan Lee · Sungroh Yoon -
2012 Poster: Dual-Space Analysis of the Sparse Linear Model »
David P Wipf -
2011 Poster: Sparse Estimation with Structured Dictionaries »
David P Wipf -
2011 Spotlight: Sparse Estimation with Structured Dictionaries »
David P Wipf -
2009 Poster: Sparse Estimation Using General Likelihoods and Non-Factorial Priors »
David P Wipf · Sri Nagarajan -
2008 Poster: Estimating the Location and Orientation of Complex, Correlated Neural Activity using MEG »
David P Wipf · Julia Owen · Hagai Attias · Kensuke Sekihara · Sri Nagarajan -
2008 Spotlight: Estimating the Location and Orientation of Complex, Correlated Neural Activity using MEG »
David P Wipf · Julia Owen · Hagai Attias · Kensuke Sekihara · Sri Nagarajan -
2007 Poster: A New View of Automatic Relevance Determination »
David P Wipf · Srikantan Nagarajan -
2006 Poster: Analysis of Empirical Bayesian Methods for Neuroelectromagnetic Source Localization »
David P Wipf · Rey R Ramirez · Jason A Palmer · Scott Makeig · Bhaskar Rao -
2006 Spotlight: Analysis of Empirical Bayesian Methods for Neuroelectromagnetic Source Localization »
David P Wipf · Rey R Ramirez · Jason A Palmer · Scott Makeig · Bhaskar Rao