Timezone: »
Graph Neural Networks (GNNs) have received extensive research attention for their promising performance in graph machine learning. Despite their extraordinary predictive accuracy, existing approaches, such as GCN and GPRGNN, are not robust in the face of homophily changes on test graphs, rendering these models vulnerable to graph structural attacks and with limited capacity in generalizing to graphs of varied homophily levels. Although many methods have been proposed to improve the robustness of GNN models, most of these techniques are restricted to the spatial domain and employ complicated defense mechanisms, such as learning new graph structures or calculating edge attentions. In this paper, we study the problem of designing simple and robust GNN models in the spectral domain. We propose EvenNet, a spectral GNN corresponding to an even-polynomial graph filter. Based on our theoretical analysis in both spatial and spectral domains, we demonstrate that EvenNet outperforms full-order models in generalizing across homophilic and heterophilic graphs, implying that ignoring odd-hop neighbors improves the robustness of GNNs. We conduct experiments on both synthetic and real-world datasets to demonstrate the effectiveness of EvenNet. Notably, EvenNet outperforms existing defense models against structural attacks without introducing additional computational costs and maintains competitiveness in traditional node classification tasks on homophilic and heterophilic graphs.
Author Information
Runlin Lei (Renmin University of China)
Zhen Wang (Alibaba)
I got my ph.d. from Sun Yat-sen University (a joint program of my school and Microsoft Research Asian). Now, I am working for Alibaba. I had research background on knowledge graph related topics. But now, I am interested in reinforcement learning (RL) and working for a post-doc in RL direction.
Yaliang Li (Alibaba)
Bolin Ding (Alibaba Group)
Zhewei Wei (Renmin University of China)
More from the Same Authors
-
2022 Poster: VF-PS: How to Select Important Participants in Vertical Federated Learning, Efficiently and Securely? »
Jiawei Jiang · Lukas Burkhalter · Fangcheng Fu · Bolin Ding · Bo Du · Anwar Hithnawi · Bo Li · Ce Zhang -
2022 Spotlight: Lightning Talks 1A-3 »
Kimia Noorbakhsh · Ronan Perry · Qi Lyu · Jiawei Jiang · Christian Toth · Olivier Jeunen · Xin Liu · Yuan Cheng · Lei Li · Manuel Rodriguez · Julius von Kügelgen · Lars Lorch · Nicolas Donati · Lukas Burkhalter · Xiao Fu · Zhongdao Wang · Songtao Feng · Ciarán Gilligan-Lee · Rishabh Mehrotra · Fangcheng Fu · Jing Yang · Bernhard Schölkopf · Ya-Li Li · Christian Knoll · Maks Ovsjanikov · Andreas Krause · Shengjin Wang · Hong Zhang · Mounia Lalmas · Bolin Ding · Bo Du · Yingbin Liang · Franz Pernkopf · Robert Peharz · Anwar Hithnawi · Julius von Kügelgen · Bo Li · Ce Zhang -
2022 Spotlight: EvenNet: Ignoring Odd-Hop Neighbors Improves Robustness of Graph Neural Networks »
Runlin Lei · Zhen Wang · Yaliang Li · Bolin Ding · Zhewei Wei -
2022 Spotlight: VF-PS: How to Select Important Participants in Vertical Federated Learning, Efficiently and Securely? »
Jiawei Jiang · Lukas Burkhalter · Fangcheng Fu · Bolin Ding · Bo Du · Anwar Hithnawi · Bo Li · Ce Zhang -
2022 Spotlight: Lightning Talks 1B-1 »
Qitian Wu · Runlin Lei · Rongqin Chen · Luca Pinchetti · Yangze Zhou · Abhinav Kumar · Hans Hao-Hsun Hsu · Wentao Zhao · Chenhao Tan · Zhen Wang · Shenghui Zhang · Yuesong Shen · Tommaso Salvatori · Gitta Kutyniok · Zenan Li · Amit Sharma · Leong Hou U · Yordan Yordanov · Christian Tomani · Bruno Ribeiro · Yaliang Li · David P Wipf · Daniel Cremers · Bolin Ding · Beren Millidge · Ye Li · Yuhang Song · Junchi Yan · Zhewei Wei · Thomas Lukasiewicz -
2022 Poster: Convolutional Neural Networks on Graphs with Chebyshev Approximation, Revisited »
Mingguo He · Zhewei Wei · Ji-Rong Wen -
2022 Poster: pFL-Bench: A Comprehensive Benchmark for Personalized Federated Learning »
Daoyuan Chen · Dawei Gao · Weirui Kuang · Yaliang Li · Bolin Ding -
2021 Poster: BernNet: Learning Arbitrary Graph Spectral Filters via Bernstein Approximation »
Mingguo He · Zhewei Wei · zengfeng Huang · Hongteng Xu -
2020 Poster: Scalable Graph Neural Networks via Bidirectional Propagation »
Ming Chen · Zhewei Wei · Bolin Ding · Yaliang Li · Ye Yuan · Xiaoyong Du · Ji-Rong Wen -
2019 Poster: An Algorithmic Framework For Differentially Private Data Analysis on Trusted Processors »
Janardhan Kulkarni · Olga Ohrimenko · Bolin Ding · Sergey Yekhanin · Joshua Allen · Harsha Nori -
2018 : AI for prosthetics: top ranked teams talks »
Jeremy Watson · Phung Huynh · Paul Gamble · Zhengfei Wang · Aditya Bhatt · Lance Rane · Aleksei Shpilman · Zhen Wang · Mattias Ljungström · Sergey Kolesnikov · Oleksii Hrinchuk · Wojciech Jaśkowski · Pranav Shyam · Fan Wang · Hongsheng Zeng · Bo Zhou