Timezone: »
Standard meta-learning for representation learning aims to find a common representation to be shared across multiple tasks. The effectiveness of these methods is often limited when the nuances of the tasks’ distribution cannot be captured by a single representation. In this work we overcome this issue by inferring a conditioning function, mapping the tasks’ side information (such as the tasks’ training dataset itself) into a representation tailored to the task at hand. We study environments in which our conditional strategy outperforms standard meta-learning, such as those in which tasks can be organized in separate clusters according to the representation they share. We then propose a meta-algorithm capable of leveraging this advantage in practice. In the unconditional setting, our method yields a new estimator enjoying faster learning rates and requiring less hyper-parameters to tune than current state-of-the-art methods. Our results are supported by preliminary experiments.
Author Information
Giulia Denevi (Leonardo Labs)
Massimiliano Pontil (IIT & UCL)
Carlo Ciliberto (University College London)
More from the Same Authors
-
2021 : Linear Convergence of Batch Greenkhorn for Regularized Multimarginal Optimal Transport »
Vladimir Kostic · Saverio Salzo · Massimiliano Pontil -
2022 Spotlight: Conditional Meta-Learning of Linear Representations »
Giulia Denevi · Massimiliano Pontil · Carlo Ciliberto -
2022 Spotlight: Lightning Talks 3B-1 »
Tianying Ji · Tongda Xu · Giulia Denevi · Aibek Alanov · Martin Wistuba · Wei Zhang · Yuesong Shen · Massimiliano Pontil · Vadim Titov · Yan Wang · Yu Luo · Daniel Cremers · Yanjun Han · Arlind Kadra · Dailan He · Josif Grabocka · Zhengyuan Zhou · Fuchun Sun · Carlo Ciliberto · Dmitry Vetrov · Mingxuan Jing · Chenjian Gao · Aaron Flores · Tsachy Weissman · Han Gao · Fengxiang He · Kunzan Liu · Wenbing Huang · Hongwei Qin -
2022 Spotlight: A gradient estimator via L1-randomization for online zero-order optimization with two point feedback »
Arya Akhavan · Evgenii Chzhen · Massimiliano Pontil · Alexandre Tsybakov -
2022 Poster: A gradient estimator via L1-randomization for online zero-order optimization with two point feedback »
Arya Akhavan · Evgenii Chzhen · Massimiliano Pontil · Alexandre Tsybakov -
2022 Poster: Learning Dynamical Systems via Koopman Operator Regression in Reproducing Kernel Hilbert Spaces »
Vladimir Kostic · Pietro Novelli · Andreas Maurer · Carlo Ciliberto · Lorenzo Rosasco · Massimiliano Pontil -
2022 Poster: Group Meritocratic Fairness in Linear Contextual Bandits »
Riccardo Grazzi · Arya Akhavan · John IF Falk · Leonardo Cella · Massimiliano Pontil -
2021 : Carlo Ciliberto Q&A »
Carlo Ciliberto -
2021 : Carlo Ciliberto »
Carlo Ciliberto -
2021 Poster: Concentration inequalities under sub-Gaussian and sub-exponential conditions »
Andreas Maurer · Massimiliano Pontil -
2021 Poster: A Gang of Adversarial Bandits »
Mark Herbster · Stephen Pasteris · Fabio Vitale · Massimiliano Pontil -
2021 Poster: PSD Representations for Effective Probability Models »
Alessandro Rudi · Carlo Ciliberto -
2021 Poster: The Role of Global Labels in Few-Shot Classification and How to Infer Them »
Ruohan Wang · Massimiliano Pontil · Carlo Ciliberto -
2021 Poster: Distributed Zero-Order Optimization under Adversarial Noise »
Arya Akhavan · Massimiliano Pontil · Alexandre Tsybakov -
2020 Poster: The Advantage of Conditional Meta-Learning for Biased Regularization and Fine Tuning »
Giulia Denevi · Massimiliano Pontil · Carlo Ciliberto -
2020 Poster: Structured Prediction for Conditional Meta-Learning »
Ruohan Wang · Yiannis Demiris · Carlo Ciliberto -
2020 Poster: Exploiting MMD and Sinkhorn Divergences for Fair and Transferable Representation Learning »
Luca Oneto · Michele Donini · Giulia Luise · Carlo Ciliberto · Andreas Maurer · Massimiliano Pontil -
2020 Poster: Fair regression with Wasserstein barycenters »
Evgenii Chzhen · Christophe Denis · Mohamed Hebiri · Luca Oneto · Massimiliano Pontil -
2020 Poster: Fair regression via plug-in estimator and recalibration with statistical guarantees »
Evgenii Chzhen · Christophe Denis · Mohamed Hebiri · Luca Oneto · Massimiliano Pontil -
2020 Oral: Fair regression via plug-in estimator and recalibration with statistical guarantees »
Evgenii Chzhen · Christophe Denis · Mohamed Hebiri · Luca Oneto · Massimiliano Pontil -
2019 Poster: Leveraging Labeled and Unlabeled Data for Consistent Fair Binary Classification »
Evgenii Chzhen · Christophe Denis · Mohamed Hebiri · Luca Oneto · Massimiliano Pontil -
2019 Poster: Online-Within-Online Meta-Learning »
Giulia Denevi · Dimitris Stamos · Carlo Ciliberto · Massimiliano Pontil -
2019 Poster: Localized Structured Prediction »
Carlo Ciliberto · Francis Bach · Alessandro Rudi -
2019 Poster: Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm »
Giulia Luise · Saverio Salzo · Massimiliano Pontil · Carlo Ciliberto -
2019 Spotlight: Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm »
Giulia Luise · Saverio Salzo · Massimiliano Pontil · Carlo Ciliberto -
2018 Poster: Learning To Learn Around A Common Mean »
Giulia Denevi · Carlo Ciliberto · Dimitris Stamos · Massimiliano Pontil -
2018 Poster: Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance »
Giulia Luise · Alessandro Rudi · Massimiliano Pontil · Carlo Ciliberto -
2018 Poster: Empirical Risk Minimization Under Fairness Constraints »
Michele Donini · Luca Oneto · Shai Ben-David · John Shawe-Taylor · Massimiliano Pontil -
2018 Poster: Manifold Structured Prediction »
Alessandro Rudi · Carlo Ciliberto · Gian Maria Marconi · Lorenzo Rosasco -
2017 Poster: Consistent Multitask Learning with Nonlinear Output Relations »
Carlo Ciliberto · Alessandro Rudi · Lorenzo Rosasco · Massimiliano Pontil -
2016 Poster: A Consistent Regularization Approach for Structured Prediction »
Carlo Ciliberto · Lorenzo Rosasco · Alessandro Rudi -
2013 Workshop: Output Representation Learning »
Yuhong Guo · Dale Schuurmans · Richard Zemel · Samy Bengio · Yoshua Bengio · Li Deng · Dan Roth · Kilian Q Weinberger · Jason Weston · Kihyuk Sohn · Florent Perronnin · Gabriel Synnaeve · Pablo R Strasser · julien audiffren · Carlo Ciliberto · Dan Goldwasser