Timezone: »
Recent advances on large-scale pre-training have shown great potentials of leveraging a large set of Pre-Trained Models (PTMs) for improving Out-of-Distribution (OoD) generalization, for which the goal is to perform well on possible unseen domains after fine-tuning on multiple training domains. However, maximally exploiting a zoo of PTMs is challenging since fine-tuning all possible combinations of PTMs is computationally prohibitive while accurate selection of PTMs requires tackling the possible data distribution shift for OoD tasks. In this work, we propose ZooD, a paradigm for PTMs ranking and ensemble with feature selection. Our proposed metric ranks PTMs by quantifying inter-class discriminability and inter-domain stability of the features extracted by the PTMs in a leave-one-domain-out cross-validation manner. The top-K ranked models are then aggregated for the target OoD task. To avoid accumulating noise induced by model ensemble, we propose an efficient variational EM algorithm to select informative features. We evaluate our paradigm on a diverse model zoo consisting of 35 models for various OoD tasks and demonstrate: (i) model ranking is better correlated with fine-tuning ranking than previous methods and up to 9859x faster than brute-force fine-tuning; (ii) OoD generalization after model ensemble with feature selection outperforms the state-of-the-art methods and the accuracy on most challenging task DomainNet is improved from 46.5\% to 50.6\%. Furthermore, we provide the fine-tuning results of 35 PTMs on 7 OoD datasets, hoping to help the research of model zoo and OoD generalization. Code will be available at \href{https://gitee.com/mindspore/models/tree/master/research/cv/zood}{https://gitee.com/mindspore/models/tree/master/research/cv/zood}.
Author Information
Qishi Dong (Hong Kong Baptist University)
Awais Muhammad (Kyung-Hee University)
Fengwei Zhou (Huawei Technologies Ltd.)
Chuanlong Xie (Beijing Normal University)
Tianyang Hu (Huawei Technologies Ltd.)
Yongxin Yang (Queen Mary University of London)
Sung-Ho Bae (Kyung Hee University)
Zhenguo Li (Noah's Ark Lab, Huawei Tech Investment Co Ltd)
More from the Same Authors
-
2021 : One Million Scenes for Autonomous Driving: ONCE Dataset »
Jiageng Mao · Niu Minzhe · ChenHan Jiang · hanxue liang · Jingheng Chen · Xiaodan Liang · Yamin Li · Chaoqiang Ye · Wei Zhang · Zhenguo Li · Jie Yu · Hang Xu · Chunjing XU -
2021 Spotlight: iFlow: Numerically Invertible Flows for Efficient Lossless Compression via a Uniform Coder »
Shifeng Zhang · Ning Kang · Tom Ryder · Zhenguo Li -
2021 : SODA10M: A Large-Scale 2D Self/Semi-Supervised Object Detection Dataset for Autonomous Driving »
Jianhua Han · Xiwen Liang · Hang Xu · Kai Chen · Lanqing Hong · Jiageng Mao · Chaoqiang Ye · Wei Zhang · Zhenguo Li · Xiaodan Liang · Chunjing XU -
2021 : How Well Does Self-Supervised Pre-Training Perform with Streaming ImageNet? »
Dapeng Hu · Shipeng Yan · Qizhengqiu Lu · Lanqing Hong · Hailin Hu · Yifan Zhang · Zhenguo Li · Jiashi Feng -
2021 : Architecture Personalization in Resource-constrained Federated Learning »
Mi Luo · Fei Chen · Zhenguo Li · Jiashi Feng -
2022 Poster: CAGroup3D: Class-Aware Grouping for 3D Object Detection on Point Clouds »
Haiyang Wang · Lihe Ding · Shaocong Dong · Shaoshuai Shi · Aoxue Li · Jianan Li · Zhenguo Li · Liwei Wang -
2023 Poster: DiffComplete: Diffusion-based Generative 3D Shape Completion »
Ruihang Chu · Enze Xie · Shentong Mo · Zhenguo Li · Matthias Niessner · Chi-Wing Fu · Jiaya Jia -
2023 Poster: SA-Solver: Stochastic Adams Solver for Fast Sampling of Diffusion Models »
Shuchen Xue · Mingyang Yi · William Luo · Shifeng Zhang · Jiacheng Sun · Zhenguo Li · Zhi-Ming Ma -
2023 Poster: DiT-3D: Exploring Plain Diffusion Transformers for 3D Shape Generation »
Shentong Mo · Enze Xie · Ruihang Chu · Lanqing Hong · Matthias Niessner · Zhenguo Li -
2023 Poster: Diff-Instruct: A Universal Approach for Transferring Knowledge From Pre-trained Diffusion Models »
William Luo · Tianyang Hu · Shifeng Zhang · Jiacheng Sun · Zhenguo Li · Zhihua Zhang -
2023 Poster: Towards Efficient Image Compression Without Autoregressive Models »
Muhammad Salman Ali · Yeongwoong Kim · Sung-Ho Bae · Hui Yong Kim · Sung-Chang Lim · Donghyun Kim · Chaoning Zhang · Maryam Qamar -
2023 Poster: Complexity Matters: Rethinking the Latent Space for Generative Modeling »
Tianyang Hu · Fei Chen · Haonan Wang · Jiawei Li · Wenjia Wang · Jiacheng Sun · Zhenguo Li -
2023 Poster: T2I-CompBench: A Comprehensive Benchmark for Open-world Compositional Text-to-image Generation »
Kaiyi Huang · Kaiyue Sun · Enze Xie · Zhenguo Li · Xihui Liu -
2022 Spotlight: Lightning Talks 2B-3 »
Jie-Jing Shao · Jiangmeng Li · Jiashuo Liu · Zongbo Han · Tianyang Hu · Jiayun Wu · Wenwen Qiang · Jun WANG · Zhipeng Liang · Lan-Zhe Guo · Wenjia Wang · Yanan Zhang · Xiao-wen Yang · Fan Yang · Bo Li · Wenyi Mo · Zhenguo Li · Liu Liu · Peng Cui · Yu-Feng Li · Changwen Zheng · Lanqing Li · Yatao Bian · Bing Su · Hui Xiong · Peilin Zhao · Bingzhe Wu · Changqing Zhang · Jianhua Yao -
2022 Spotlight: Understanding Square Loss in Training Overparametrized Neural Network Classifiers »
Tianyang Hu · Jun WANG · Wenjia Wang · Zhenguo Li -
2022 Poster: DetCLIP: Dictionary-Enriched Visual-Concept Paralleled Pre-training for Open-world Detection »
Lewei Yao · Jianhua Han · Youpeng Wen · Xiaodan Liang · Dan Xu · Wei Zhang · Zhenguo Li · Chunjing XU · Hang Xu -
2022 Poster: Boosting Out-of-distribution Detection with Typical Features »
Yao Zhu · YueFeng Chen · Chuanlong Xie · Xiaodan Li · Rong Zhang · Hui Xue' · Xiang Tian · bolun zheng · Yaowu Chen -
2022 Poster: Understanding Square Loss in Training Overparametrized Neural Network Classifiers »
Tianyang Hu · Jun WANG · Wenjia Wang · Zhenguo Li -
2021 : Layer-Parallel Training of Residual Networks with Auxiliary Variables »
Qi Sun · Hexin Dong · Zewei Chen · WeiZhen Dian · Jiacheng Sun · Yitong Sun · Zhenguo Li · Bin Dong -
2021 : Contributed Talk 3: Architecture Personalization in Resource-constrained Federated Learning »
Mi Luo · Fei Chen · Zhenguo Li · Jiashi Feng -
2021 Poster: iFlow: Numerically Invertible Flows for Efficient Lossless Compression via a Uniform Coder »
Shifeng Zhang · Ning Kang · Tom Ryder · Zhenguo Li -
2021 Poster: On Effective Scheduling of Model-based Reinforcement Learning »
Hang Lai · Jian Shen · Weinan Zhang · Yimin Huang · Xing Zhang · Ruiming Tang · Yong Yu · Zhenguo Li -
2021 Poster: OSOA: One-Shot Online Adaptation of Deep Generative Models for Lossless Compression »
Chen Zhang · Shifeng Zhang · Fabio Maria Carlucci · Zhenguo Li -
2021 Poster: MixACM: Mixup-Based Robustness Transfer via Distillation of Activated Channel Maps »
Awais Muhammad · Fengwei Zhou · Chuanlong Xie · Jiawei Li · Sung-Ho Bae · Zhenguo Li -
2021 Poster: Towards a Theoretical Framework of Out-of-Distribution Generalization »
Haotian Ye · Chuanlong Xie · Tianle Cai · Ruichen Li · Zhenguo Li · Liwei Wang -
2020 Poster: Bridging the Gap between Sample-based and One-shot Neural Architecture Search with BONAS »
Han Shi · Renjie Pi · Hang Xu · Zhenguo Li · James Kwok · Tong Zhang -
2020 Poster: Locally Differentially Private (Contextual) Bandits Learning »
Kai Zheng · Tianle Cai · Weiran Huang · Zhenguo Li · Liwei Wang