Timezone: »
Equipping artificial agents with useful exploration mechanisms remains a challenge to this day. Humans, on the other hand, seem to manage the trade-off between exploration and exploitation effortlessly. In the present article, we put forward the hypothesis that they accomplish this by making optimal use of limited computational resources. We study this hypothesis by meta-learning reinforcement learning algorithms that sacrifice performance for a shorter description length (defined as the number of bits required to implement the given algorithm). The emerging class of models captures human exploration behavior better than previously considered approaches, such as Boltzmann exploration, upper confidence bound algorithms, and Thompson sampling. We additionally demonstrate that changing the description length in our class of models produces the intended effects: reducing description length captures the behavior of brain-lesioned patients while increasing it mirrors cognitive development during adolescence.
Author Information
Marcel Binz (Max Planck Institute for Biological Cybernetics)
Eric Schulz (Max Planck Institute for Biological Cybernetics)
More from the Same Authors
-
2023 Poster: Meta-in-context learning in large language models »
Julian Coda-Forno · Marcel Binz · Zeynep Akata · Matt Botvinick · Jane Wang · Eric Schulz -
2023 Poster: Reinforcement Learning with Simple Sequence Priors »
Tankred Saanum · Noemi Elteto · Peter Dayan · Marcel Binz · Eric Schulz -
2023 Poster: In-Context Impersonation Reveals Large Language Models' Strengths and Biases »
Leonard Salewski · Isabel Rio-Torto · Stephan Alaniz · Eric Schulz · Zeynep Akata -
2022 Spotlight: Lightning Talks 5A-4 »
Yangrui Chen · Zhiyang Chen · Liang Zhang · Hanqing Wang · Jiaqi Han · Shuchen Wu · shaohui peng · Ganqu Cui · Yoav Kolumbus · Noemi Elteto · Xing Hu · Anwen Hu · Wei Liang · Cong Xie · Lifan Yuan · Noam Nisan · Wenbing Huang · Yousong Zhu · Ishita Dasgupta · Luc V Gool · Tingyang Xu · Rui Zhang · Qin Jin · Zhaowen Li · Meng Ma · Bingxiang He · Yangyi Chen · Juncheng Gu · Wenguan Wang · Ke Tang · Yu Rong · Eric Schulz · Fan Yang · Wei Li · Zhiyuan Liu · Jiaming Guo · Yanghua Peng · Haibin Lin · Haixin Wang · Qi Yi · Maosong Sun · Ruizhi Chen · Chuan Wu · Chaoyang Zhao · Yibo Zhu · Liwei Wu · xishan zhang · Zidong Du · Rui Zhao · Jinqiao Wang · Ling Li · Qi Guo · Ming Tang · Yunji Chen -
2022 Spotlight: Learning Structure from the Ground up---Hierarchical Representation Learning by Chunking »
Shuchen Wu · Noemi Elteto · Ishita Dasgupta · Eric Schulz -
2022 Panel: Panel 2B-1: Using natural language… & Modeling Human Exploration… »
Sreejan Kumar · Marcel Binz -
2022 Poster: Learning Structure from the Ground up---Hierarchical Representation Learning by Chunking »
Shuchen Wu · Noemi Elteto · Ishita Dasgupta · Eric Schulz