Timezone: »
Despite their ability to represent highly expressive functions, deep learning models seem to find simple solutions that generalize surprisingly well. Spectral bias -- the tendency of neural networks to prioritize learning low frequency functions -- is one possible explanation for this phenomenon, but so far spectral bias has primarily been observed in theoretical models and simplified experiments. In this work, we propose methodologies for measuring spectral bias in modern image classification networks on CIFAR-10 and ImageNet. We find that these networks indeed exhibit spectral bias, and that interventions that improve test accuracy on CIFAR-10 tend to produce learned functions that have higher frequencies overall but lower frequencies in the vicinity of examples from each class. This trend holds across variation in training time, model architecture, number of training examples, data augmentation, and self-distillation. We also explore the connections between function frequency and image frequency and find that spectral bias is sensitive to the low frequencies prevalent in natural images. On ImageNet, we find that learned function frequency also varies with internal class diversity, with higher frequencies on more diverse classes. Our work enables measuring and ultimately influencing the spectral behavior of neural networks used for image classification, and is a step towards understanding why deep models generalize well.
Author Information
Sara Fridovich-Keil (UC Berkeley)
Raphael Gontijo Lopes (Google Brain)
Rebecca Roelofs (Google)
More from the Same Authors
-
2022 : Imitation Is Not Enough: Robustifying Imitation with Reinforcement Learning for Challenging Driving Scenarios »
Yiren Lu · Yiren Lu · Yiren Lu · Justin Fu · George Tucker · Xinlei Pan · Eli Bronstein · Rebecca Roelofs · Benjamin Sapp · Brandyn White · Aleksandra Faust · Shimon Whiteson · Dragomir Anguelov · Sergey Levine -
2023 Poster: DriveMax: An Accelerated, Data-Driven Simulator for Large-Scale Autonomous Driving Research »
Cole Gulino · Justin Fu · Wenjie Luo · George Tucker · Eli Bronstein · Yiren Lu · Jean Harb · Xinlei Pan · Yan Wang · Xiangyu Chen · John Co-Reyes · Rishabh Agarwal · Rebecca Roelofs · Yao Lu · Nico Montali · Paul Mougin · Zoey Yang · Brandyn White · Aleksandra Faust · Rowan McAllister · Dragomir Anguelov · Benjamin Sapp -
2023 Workshop: Workshop on Distribution Shifts: New Frontiers with Foundation Models »
Rebecca Roelofs · Fanny Yang · Hongseok Namkoong · Masashi Sugiyama · Jacob Eisenstein · Pang Wei Koh · Shiori Sagawa · Tatsunori Hashimoto · Yoonho Lee -
2022 Workshop: Workshop on Distribution Shifts: Connecting Methods and Applications »
Chelsea Finn · Fanny Yang · Hongseok Namkoong · Masashi Sugiyama · Jacob Eisenstein · Jonas Peters · Rebecca Roelofs · Shiori Sagawa · Pang Wei Koh · Yoonho Lee -
2022 Poster: When does dough become a bagel? Analyzing the remaining mistakes on ImageNet »
Vijay Vasudevan · Benjamin Caine · Raphael Gontijo Lopes · Sara Fridovich-Keil · Rebecca Roelofs -
2022 Poster: Photorealistic Text-to-Image Diffusion Models with Deep Language Understanding »
Chitwan Saharia · William Chan · Saurabh Saxena · Lala Li · Jay Whang · Remi Denton · Kamyar Ghasemipour · Raphael Gontijo Lopes · Burcu Karagol Ayan · Tim Salimans · Jonathan Ho · David Fleet · Mohammad Norouzi -
2022 Poster: Models Out of Line: A Fourier Lens on Distribution Shift Robustness »
Sara Fridovich-Keil · Brian Bartoldson · James Diffenderfer · Bhavya Kailkhura · Timo Bremer -
2020 Workshop: Resistance AI Workshop »
Suzanne Kite · Mattie Tesfaldet · J Khadijah Abdurahman · William Agnew · Elliot Creager · Agata Foryciarz · Raphael Gontijo Lopes · Pratyusha Kalluri · Marie-Therese Png · Manuel Sabin · Maria Skoularidou · Ramon Vilarino · Rose Wang · Sayash Kapoor · Micah Carroll -
2020 Poster: Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains »
Matthew Tancik · Pratul Srinivasan · Ben Mildenhall · Sara Fridovich-Keil · Nithin Raghavan · Utkarsh Singhal · Ravi Ramamoorthi · Jonathan Barron · Ren Ng -
2020 Spotlight: Fourier Features Let Networks Learn High Frequency Functions in Low Dimensional Domains »
Matthew Tancik · Pratul Srinivasan · Ben Mildenhall · Sara Fridovich-Keil · Nithin Raghavan · Utkarsh Singhal · Ravi Ramamoorthi · Jonathan Barron · Ren Ng -
2020 Affinity Workshop: Queer in AI Workshop @ NeurIPS 2020 »
Raphael Gontijo Lopes · Luke Stark · Melvin Selim Atay · ST John -
2019 Poster: A Fourier Perspective on Model Robustness in Computer Vision »
Dong Yin · Raphael Gontijo Lopes · Jonathon Shlens · Ekin Dogus Cubuk · Justin Gilmer -
2019 Poster: A Meta-Analysis of Overfitting in Machine Learning »
Becca Roelofs · Vaishaal Shankar · Benjamin Recht · Sara Fridovich-Keil · Moritz Hardt · John Miller · Ludwig Schmidt