Timezone: »
Poster
An $\alpha$-No-Regret Algorithm For Graphical Bilinear Bandits
Geovani Rizk · Igor Colin · Albert Thomas · Rida Laraki · Yann Chevaleyre
We propose the first regret-based approach to the \emph{Graphical Bilinear Bandits} problem, where $n$ agents in a graph play a stochastic bilinear bandit game with each of their neighbors. This setting reveals a combinatorial NP-hard problem that prevents the use of any existing regret-based algorithm in the (bi-)linear bandit literature. In this paper, we fill this gap and present the first regret-based algorithm for graphical bilinear bandits using the principle of optimism in the face of uncertainty. Theoretical analysis of this new method yields an upper bound of $\tilde{O}(\sqrt{T})$ on the $\alpha$-regret and evidences the impact of the graph structure on the rate of convergence. Finally, we show through various experiments the validity of our approach.
Author Information
Geovani Rizk (EPFL)
Igor Colin (Huawei)
Albert Thomas (Huawei)
Rida Laraki (University of Liverpool)
Yann Chevaleyre (Université Paris Dauphine)
More from the Same Authors
-
2023 Poster: On the Role of Randomization in Adversarially Robust Classification »
Lucas Gnecco Heredia · Muni Sreenivas Pydi · Laurent Meunier · Benjamin Negrevergne · Yann Chevaleyre -
2023 Poster: Robust Distributed Learning: Tight Error Bounds and Breakdown Point under Data Heterogeneity »
Youssef Allouah · Rachid Guerraoui · Nirupam Gupta · Rafael Pinot · Geovani Rizk -
2023 Poster: Precision-Recall Divergence Optimization for Generative Modeling with GANs and Normalizing Flows »
Alexandre Verine · Benjamin Negrevergne · Muni Sreenivas Pydi · Yann Chevaleyre -
2022 Poster: Towards Consistency in Adversarial Classification »
Laurent Meunier · Raphael Ettedgui · Rafael Pinot · Yann Chevaleyre · Jamal Atif -
2022 Poster: Smooth Fictitious Play in Stochastic Games with Perturbed Payoffs and Unknown Transitions »
Lucas Baudin · Rida Laraki -
2020 Poster: A Simple and Efficient Smoothing Method for Faster Optimization and Local Exploration »
Kevin Scaman · Ludovic DOS SANTOS · Merwan Barlier · Igor Colin -
2019 : Break / Poster Session 1 »
Antonia Marcu · Yao-Yuan Yang · Pascale Gourdeau · Chen Zhu · Thodoris Lykouris · Jianfeng Chi · Mark Kozdoba · Arjun Nitin Bhagoji · Xiaoxia Wu · Jay Nandy · Michael T Smith · Bingyang Wen · Yuege Xie · Konstantinos Pitas · Suprosanna Shit · Maksym Andriushchenko · Dingli Yu · Gaël Letarte · Misha Khodak · Hussein Mozannar · Chara Podimata · James Foulds · Yizhen Wang · Huishuai Zhang · Ondrej Kuzelka · Alexander Levine · Nan Lu · Zakaria Mhammedi · Paul Viallard · Diana Cai · Lovedeep Gondara · James Lucas · Yasaman Mahdaviyeh · Aristide Baratin · Rishi Bommasani · Alessandro Barp · Andrew Ilyas · Kaiwen Wu · Jens Behrmann · Omar Rivasplata · Amir Nazemi · Aditi Raghunathan · Will Stephenson · Sahil Singla · Akhil Gupta · YooJung Choi · Yannic Kilcher · Clare Lyle · Edoardo Manino · Andrew Bennett · Zhi Xu · Niladri Chatterji · Emre Barut · Flavien Prost · Rodrigo Toro Icarte · Arno Blaas · Chulhee Yun · Sahin Lale · YiDing Jiang · Tharun Kumar Reddy Medini · Ashkan Rezaei · Alexander Meinke · Stephen Mell · Gary Kazantsev · Shivam Garg · Aradhana Sinha · Vishnu Lokhande · Geovani Rizk · Han Zhao · Aditya Kumar Akash · Jikai Hou · Ali Ghodsi · Matthias Hein · Tyler Sypherd · Yichen Yang · Anastasia Pentina · Pierre Gillot · Antoine Ledent · Guy Gur-Ari · Noah MacAulay · Tianzong Zhang -
2019 Poster: Theoretical Limits of Pipeline Parallel Optimization and Application to Distributed Deep Learning »
Igor Colin · Ludovic DOS SANTOS · Kevin Scaman -
2015 Poster: Extending Gossip Algorithms to Distributed Estimation of U-statistics »
Igor Colin · Aurélien Bellet · Joseph Salmon · Stéphan Clémençon -
2015 Spotlight: Extending Gossip Algorithms to Distributed Estimation of U-statistics »
Igor Colin · Aurélien Bellet · Joseph Salmon · Stéphan Clémençon