Timezone: »
Poster
Semi-supervised Active Linear Regression
Nived Rajaraman · Fnu Devvrit · Pranjal Awasthi
Labeled data often comes at a high cost as it may require recruiting human labelers or running costly experiments. At the same time, in many practical scenarios, one already has access to a partially labeled, potentially biased dataset that can help with the learning task at hand. Motivated by such settings, we formally initiate a study of ``semi-supervised active learning'' through the frame of linear regression. Here, the learner has access to a dataset $X \in \mathbb{R}^{(n_{\text{un}}+n_{\text{lab}}) \times d}$ composed of $n_{\text{un}}$ unlabeled examples that a learner can actively query, and $n_{\text{lab}}$ examples labeled a priori. Denoting the true labels by $Y \in \mathbb{R}^{n_{\text{un}} + n_{\text{lab}}}$, the learner's objective is to find $\widehat{\beta} \in \mathbb{R}^d$ such that,$$\| X \widehat{\beta} - Y \|_2^2 \le (1 + \epsilon) \min_{\beta \in \mathbb{R}^d} \| X \beta - Y \|_2^2$$while querying the labels of as few unlabeled points as possible. In this paper, we introduce an instance dependent parameter called the reduced rank, denoted $\text{R}_X$, and propose an efficient algorithm with query complexity $O(\text{R}_X/\epsilon)$. This result directly implies improved upper bounds for two important special cases: $(i)$ active ridge regression, and $(ii)$ active kernel ridge regression, where the reduced-rank equates to the ``statistical dimension'', $\textsf{sd}_\lambda$ and ``effective dimension'', $d_\lambda$ of the problem respectively, where $\lambda \ge 0$ denotes the regularization parameter. Finally, we introduce a distributional version of the problem as a special case of the agnostic formulation we consider earlier; here, for every $X$, we prove a matching instance-wise lower bound of $\Omega (\text{R}_X / \epsilon)$ on the query complexity of any algorithm.
Author Information
Nived Rajaraman (University of California, Berkeley)
Hi I am Nived, a 2nd year PhD student at the University of California, Berkeley. My research interests are broadly in high dimensional statistics. More recently I have been exploring the theory of reinforcement learning
Fnu Devvrit (University of Texas, Austin)
Hi. I am Devvrit, a second year PhD student at UT Austin. I'm broadly interested in large scale machine learning, deep learning, and optimization. In my free time, I play badminton and look for adventure sports.
Pranjal Awasthi (Google)
More from the Same Authors
-
2021 Spotlight: On the Existence of The Adversarial Bayes Classifier »
Pranjal Awasthi · Natalie Frank · Mehryar Mohri -
2021 Spotlight: Calibration and Consistency of Adversarial Surrogate Losses »
Pranjal Awasthi · Natalie Frank · Anqi Mao · Mehryar Mohri · Yutao Zhong -
2022 : A Theory of Learning with Competing Objectives and User Feedback »
Pranjal Awasthi · Corinna Cortes · Yishay Mansour · Mehryar Mohri -
2022 : Theory and Algorithm for Batch Distribution Drift Problems »
Pranjal Awasthi · Corinna Cortes · Christopher Mohri -
2022 : A Theory of Learning with Competing Objectives and User Feedback »
Pranjal Awasthi · Corinna Cortes · Yishay Mansour · Mehryar Mohri -
2022 : A Theory of Learning with Competing Objectives and User Feedback »
Pranjal Awasthi · Corinna Cortes · Yishay Mansour · Mehryar Mohri -
2022 Poster: On the Adversarial Robustness of Mixture of Experts »
Joan Puigcerver · Rodolphe Jenatton · Carlos Riquelme · Pranjal Awasthi · Srinadh Bhojanapalli -
2022 Poster: Trimmed Maximum Likelihood Estimation for Robust Generalized Linear Model »
Pranjal Awasthi · Abhimanyu Das · Weihao Kong · Rajat Sen -
2022 Poster: S3GC: Scalable Self-Supervised Graph Clustering »
Fnu Devvrit · Aditya Sinha · Inderjit Dhillon · Prateek Jain -
2022 Poster: Multi-Class $H$-Consistency Bounds »
Pranjal Awasthi · Anqi Mao · Mehryar Mohri · Yutao Zhong -
2022 Poster: Minimax Optimal Online Imitation Learning via Replay Estimation »
Gokul Swamy · Nived Rajaraman · Matt Peng · Sanjiban Choudhury · J. Bagnell · Steven Wu · Jiantao Jiao · Kannan Ramchandran -
2021 Poster: On the Existence of The Adversarial Bayes Classifier »
Pranjal Awasthi · Natalie Frank · Mehryar Mohri -
2021 Poster: Efficient Algorithms for Learning Depth-2 Neural Networks with General ReLU Activations »
Pranjal Awasthi · Alex Tang · Aravindan Vijayaraghavan -
2021 Poster: Neural Active Learning with Performance Guarantees »
Zhilei Wang · Pranjal Awasthi · Christoph Dann · Ayush Sekhari · Claudio Gentile -
2021 Poster: A Convergence Analysis of Gradient Descent on Graph Neural Networks »
Pranjal Awasthi · Abhimanyu Das · Sreenivas Gollapudi -
2021 Poster: On the Value of Interaction and Function Approximation in Imitation Learning »
Nived Rajaraman · Yanjun Han · Lin Yang · Jingbo Liu · Jiantao Jiao · Kannan Ramchandran -
2021 Poster: Calibration and Consistency of Adversarial Surrogate Losses »
Pranjal Awasthi · Natalie Frank · Anqi Mao · Mehryar Mohri · Yutao Zhong -
2020 Poster: Toward the Fundamental Limits of Imitation Learning »
Nived Rajaraman · Lin Yang · Jiantao Jiao · Kannan Ramchandran