Timezone: »
Poster
Beyond black box densities: Parameter learning for the deviated components
Dat Do · Nhat Ho · XuanLong Nguyen
As we collect additional samples from a data population for which a known density function estimate may have been previously obtained by a black box method, the increased complexity of the data set may result in the true density being deviated from the known estimate by a mixture distribution. To model this phenomenon, we consider the \emph{deviating mixture model} $(1-\lambda^{*})h_0 + \lambda^{*} (\sum_{i = 1}^{k} p_{i}^{*} f(x|\theta_{i}^{*}))$, where $h_0$ is a known density function, while the deviated proportion $\lambda^{*}$ and latent mixing measure $G_{*} = \sum_{i = 1}^{k} p_{i}^{*} \delta_{\theta_i^{*}}$ associated with the mixture distribution are unknown. Via a novel notion of distinguishability between the known density $h_{0}$ and the deviated mixture distribution, we establish rates of convergence for the maximum likelihood estimates of $\lambda^{*}$ and $G^{*}$ under Wasserstein metric. Simulation studies are carried out to illustrate the theory.
Author Information
Dat Do (University of Michigan)
Nhat Ho (University of Texas at Austin)
XuanLong Nguyen (University of Michigan)
More from the Same Authors
-
2022 : Statistical and Computational Complexities of BFGS Quasi-Newton Method for Generalized Linear Models »
Qiujiang Jin · Aryan Mokhtari · Nhat Ho · Tongzheng Ren -
2023 Poster: LVM-Med: Learning Large-Scale Self-Supervised Vision Models for Medical Imaging via Second-order Graph Matching »
Duy Minh Ho Nguyen · Hoang Nguyen · Nghiem Diep · Tan Ngoc Pham · Tri Cao · Binh Nguyen · Paul Swoboda · Nhat Ho · Shadi Albarqouni · Pengtao Xie · Mathias Niepert · Daniel Sonntag -
2023 Poster: Minimax Optimal Rate for Parameter Estimation in Multivariate Deviated Models »
Dat Do · Huy Nguyen · Khai Nguyen · Nhat Ho -
2023 Poster: Energy-Based Sliced Wasserstein Distance »
Khai Nguyen · Nhat Ho -
2023 Poster: Demystifying Softmax Gating in Gaussian Mixture of Experts »
Huy Nguyen · TrungTin Nguyen · Nhat Ho -
2023 Poster: Markovian Sliced Wasserstein Distances: Beyond Independent Projections »
Khai Nguyen · Tongzheng Ren · Nhat Ho -
2023 Poster: Designing Robust Transformers using Robust Kernel Density Estimation »
Xing Han · Tongzheng Ren · Tan Nguyen · Khai Nguyen · Joydeep Ghosh · Nhat Ho -
2022 Poster: Amortized Projection Optimization for Sliced Wasserstein Generative Models »
Khai Nguyen · Nhat Ho -
2022 Poster: Revisiting Sliced Wasserstein on Images: From Vectorization to Convolution »
Khai Nguyen · Nhat Ho -
2022 Poster: Stochastic Multiple Target Sampling Gradient Descent »
Hoang Phan · Ngoc Tran · Trung Le · Toan Tran · Nhat Ho · Dinh Phung -
2022 Poster: FourierFormer: Transformer Meets Generalized Fourier Integral Theorem »
Tan Nguyen · Minh Pham · Tam Nguyen · Khai Nguyen · Stanley Osher · Nhat Ho -
2022 Poster: Improving Transformer with an Admixture of Attention Heads »
Tan Nguyen · Tam Nguyen · Hai Do · Khai Nguyen · Vishwanath Saragadam · Minh Pham · Khuong Duy Nguyen · Nhat Ho · Stanley Osher -
2021 Poster: Structured Dropout Variational Inference for Bayesian Neural Networks »
Son Nguyen · Duong Nguyen · Khai Nguyen · Khoat Than · Hung Bui · Nhat Ho -
2021 Poster: On Robust Optimal Transport: Computational Complexity and Barycenter Computation »
Khang Le · Huy Nguyen · Quang M Nguyen · Tung Pham · Hung Bui · Nhat Ho -
2020 Poster: Projection Robust Wasserstein Distance and Riemannian Optimization »
Tianyi Lin · Chenyou Fan · Nhat Ho · Marco Cuturi · Michael Jordan -
2020 Poster: Fixed-Support Wasserstein Barycenters: Computational Hardness and Fast Algorithm »
Tianyi Lin · Nhat Ho · Xi Chen · Marco Cuturi · Michael Jordan -
2020 Spotlight: Projection Robust Wasserstein Distance and Riemannian Optimization »
Tianyi Lin · Chenyou Fan · Nhat Ho · Marco Cuturi · Michael Jordan -
2019 Poster: Scalable inference of topic evolution via models for latent geometric structures »
Mikhail Yurochkin · Zhiwei Fan · Aritra Guha · Paraschos Koutris · XuanLong Nguyen -
2017 Poster: Conic Scan-and-Cover algorithms for nonparametric topic modeling »
Mikhail Yurochkin · Aritra Guha · XuanLong Nguyen -
2017 Poster: Multi-way Interacting Regression via Factorization Machines »
Mikhail Yurochkin · XuanLong Nguyen · nikolaos Vasiloglou -
2016 Poster: Geometric Dirichlet Means Algorithm for topic inference »
Mikhail Yurochkin · XuanLong Nguyen -
2014 Poster: Parallel Feature Selection Inspired by Group Testing »
Yingbo Zhou · Utkarsh Porwal · Ce Zhang · Hung Q Ngo · XuanLong Nguyen · Christopher RĂ© · Venu Govindaraju -
2013 Poster: Bayesian inference as iterated random functions with applications to sequential inference in graphical models »
Arash Amini · XuanLong Nguyen -
2013 Spotlight: Bayesian inference as iterated random functions with applications to sequential inference in graphical models »
Arash Amini · XuanLong Nguyen -
2007 Spotlight: Estimating divergence functionals and the likelihood ratio by penalized convex risk minimization »
XuanLong Nguyen · Martin J Wainwright · Michael Jordan -
2007 Poster: Estimating divergence functionals and the likelihood ratio by penalized convex risk minimization »
XuanLong Nguyen · Martin J Wainwright · Michael Jordan -
2006 Poster: Distributed PCA and Network Anomaly Detection »
Ling Huang · XuanLong Nguyen · Minos Garofalakis · Michael Jordan · Anthony D Joseph · Nina Taft