Timezone: »
Poster
Policy Optimization for Markov Games: Unified Framework and Faster Convergence
Runyu Zhang · Qinghua Liu · Huan Wang · Caiming Xiong · Na Li · Yu Bai
This paper studies policy optimization algorithms for multi-agent reinforcement learning. We begin by proposing an algorithm framework for two-player zero-sum Markov Games in the full-information setting, where each iteration consists of a policy update step at each state using a certain matrix game algorithm, and a value update step with a certain learning rate. This framework unifies many existing and new policy optimization algorithms. We show that the \emph{state-wise average policy} of this algorithm converges to an approximate Nash equilibrium (NE) of the game, as long as the matrix game algorithms achieve low weighted regret at each state, with respect to weights determined by the speed of the value updates. Next, we show that this framework instantiated with the Optimistic Follow-The-Regularized-Leader (OFTRL) algorithm at each state (and smooth value updates) can find an $\mathcal{\widetilde{O}}(T^{-5/6})$ approximate NE in $T$ iterations, and a similar algorithm with slightly modified value update rule achieves a faster $\mathcal{\widetilde{O}}(T^{-1})$ convergence rate. These improve over the current best $\mathcal{\widetilde{O}}(T^{-1/2})$ rate of symmetric policy optimization type algorithms. We also extend this algorithm to multi-player general-sum Markov Games and show an $\mathcal{\widetilde{O}}(T^{-3/4})$ convergence rate to Coarse Correlated Equilibria (CCE). Finally, we provide a numerical example to verify our theory and investigate the importance of smooth value updates, and find that using ''eager'' value updates instead (equivalent to the independent natural policy gradient algorithm) may significantly slow down the convergence, even on a simple game with $H=2$ layers.
Author Information
Runyu Zhang (Harvard University)
Qinghua Liu (Princeton University)
Huan Wang (Salesforce Research)
Caiming Xiong (Salesforce Research)
Na Li (Harvard University)
Yu Bai (Salesforce Research)
More from the Same Authors
-
2021 Spotlight: Bellman Eluder Dimension: New Rich Classes of RL Problems, and Sample-Efficient Algorithms »
Chi Jin · Qinghua Liu · Sobhan Miryoosefi -
2021 Spotlight: Understanding the Under-Coverage Bias in Uncertainty Estimation »
Yu Bai · Song Mei · Huan Wang · Caiming Xiong -
2022 : Fantastic Rewards and How to Tame Them: A Case Study on Reward Learning for Task-Oriented Dialogue Systems »
Yihao Feng · Shentao Yang · Shujian Zhang · Jianguo Zhang · Caiming Xiong · Mingyuan Zhou · Huan Wang -
2022 : Fantastic Rewards and How to Tame Them: A Case Study on Reward Learning for Task-Oriented Dialogue Systems »
Yihao Feng · Shentao Yang · Shujian Zhang · Jianguo Zhang · Caiming Xiong · Mingyuan Zhou · Huan Wang -
2022 Spotlight: Ensemble of Averages: Improving Model Selection and Boosting Performance in Domain Generalization »
Devansh Arpit · Huan Wang · Yingbo Zhou · Caiming Xiong -
2022 Spotlight: Lightning Talks 5B-1 »
Devansh Arpit · Xiaojun Xu · Zifan Shi · Ivan Skorokhodov · Shayan Shekarforoush · Zhan Tong · Yiqun Wang · Shichong Peng · Linyi Li · Ivan Skorokhodov · Huan Wang · Yibing Song · David Lindell · Yinghao Xu · Seyed Alireza Moazenipourasil · Sergey Tulyakov · Peter Wonka · Yiqun Wang · Ke Li · David Fleet · Yujun Shen · Yingbo Zhou · Bo Li · Jue Wang · Peter Wonka · Marcus Brubaker · Caiming Xiong · Limin Wang · Deli Zhao · Qifeng Chen · Dit-Yan Yeung -
2022 : Near-Negative Distinction: Giving a Second Life to Human Evaluation Datasets »
Philippe Laban · Chien-Sheng Wu · Wenhao Liu · Caiming Xiong -
2022 Poster: Identifying good directions to escape the NTK regime and efficiently learn low-degree plus sparse polynomials »
Eshaan Nichani · Yu Bai · Jason Lee -
2022 Poster: Efficient Phi-Regret Minimization in Extensive-Form Games via Online Mirror Descent »
Yu Bai · Chi Jin · Song Mei · Ziang Song · Tiancheng Yu -
2022 Poster: Sample-Efficient Reinforcement Learning of Partially Observable Markov Games »
Qinghua Liu · Csaba Szepesvari · Chi Jin -
2022 Poster: Ensemble of Averages: Improving Model Selection and Boosting Performance in Domain Generalization »
Devansh Arpit · Huan Wang · Yingbo Zhou · Caiming Xiong -
2022 Poster: On the Global Convergence Rates of Decentralized Softmax Gradient Play in Markov Potential Games »
Runyu Zhang · Jincheng Mei · Bo Dai · Dale Schuurmans · Na Li -
2022 Poster: Sample-Efficient Learning of Correlated Equilibria in Extensive-Form Games »
Ziang Song · Song Mei · Yu Bai -
2021 Poster: Sample-Efficient Learning of Stackelberg Equilibria in General-Sum Games »
Yu Bai · Chi Jin · Huan Wang · Caiming Xiong -
2021 Poster: Bellman Eluder Dimension: New Rich Classes of RL Problems, and Sample-Efficient Algorithms »
Chi Jin · Qinghua Liu · Sobhan Miryoosefi -
2021 Poster: Understanding the Under-Coverage Bias in Uncertainty Estimation »
Yu Bai · Song Mei · Huan Wang · Caiming Xiong -
2021 Poster: Policy Finetuning: Bridging Sample-Efficient Offline and Online Reinforcement Learning »
Tengyang Xie · Nan Jiang · Huan Wang · Caiming Xiong · Yu Bai -
2021 Poster: Near-Optimal Offline Reinforcement Learning via Double Variance Reduction »
Ming Yin · Yu Bai · Yu-Xiang Wang -
2020 Poster: Leveraging Predictions in Smoothed Online Convex Optimization via Gradient-based Algorithms »
Yingying Li · Na Li -
2020 Poster: Tackling the Objective Inconsistency Problem in Heterogeneous Federated Optimization »
Jianyu Wang · Qinghua Liu · Hao Liang · Gauri Joshi · H. Vincent Poor -
2020 Poster: Scalable Multi-Agent Reinforcement Learning for Networked Systems with Average Reward »
Guannan Qu · Yiheng Lin · Adam Wierman · Na Li -
2020 Poster: Sample-Efficient Reinforcement Learning of Undercomplete POMDPs »
Chi Jin · Sham Kakade · Akshay Krishnamurthy · Qinghua Liu -
2020 Spotlight: Sample-Efficient Reinforcement Learning of Undercomplete POMDPs »
Chi Jin · Sham Kakade · Akshay Krishnamurthy · Qinghua Liu -
2019 Poster: Online Optimal Control with Linear Dynamics and Predictions: Algorithms and Regret Analysis »
Yingying Li · Xin Chen · Na Li -
2019 Poster: Provably Efficient Q-Learning with Low Switching Cost »
Yu Bai · Tengyang Xie · Nan Jiang · Yu-Xiang Wang