Timezone: »
In human networks, nodes belonging to a marginalized group often have a disproportionate rate of unknown or missing features. This, in conjunction with graph structure and known feature biases, can cause graph feature imputation algorithms to predict values for unknown features that make the marginalized group's feature values more distinct from the the dominant group's feature values than they are in reality. We call this distinction the discrimination risk. We prove that a higher discrimination risk can amplify the unfairness of a machine learning model applied to the imputed data. We then formalize a general graph feature imputation framework called mean aggregation imputation and theoretically and empirically characterize graphs in which applying this framework can yield feature values with a high discrimination risk. We propose a simple algorithm to ensure mean aggregation-imputed features provably have a low discrimination risk, while minimally sacrificing reconstruction error (with respect to the imputation objective). We evaluate the fairness and accuracy of our solution on synthetic and real-world credit networks.
Author Information
Arjun Subramonian (University of California, Los Angeles)
Kai-Wei Chang (UCLA)
Yizhou Sun (UCLA)
More from the Same Authors
-
2022 : Group Excess Risk Bound of Overparameterized Linear Regression with Constant-Stepsize SGD »
Arjun Subramonian · Levent Sagun · Kai-Wei Chang · Yizhou Sun -
2022 : Unit Selection: Learning Benefit Function from Finite Population Data »
Ang Li · Song Jiang · Yizhou Sun · Judea Pearl -
2022 : Dissimilar Nodes Improve Graph Active Learning »
Zhicheng Ren · Yifu Yuan · Yuxin Wu · Xiaxuan Gao · Yewen Wang · Yizhou Sun -
2022 : Empowering Language Models with Knowledge Graph Reasoning for Question Answering »
Ziniu Hu · Yichong Xu · Wenhao Yu · Shuohang Wang · Ziyi Yang · Chenguang Zhu · Kai-Wei Chang · Yizhou Sun -
2023 Poster: CARE: Modeling Interacting Dynamics Under Temporal Distribution Shift »
Xiao Luo · Haixin Wang · Zijie Huang · Huiyu Jiang · Abhijeet Gangan · Song Jiang · Yizhou Sun -
2023 Poster: A Pseudo-Semantic Loss for Deep Generative Models with Logical Constraints »
Kareem Ahmed · Kai-Wei Chang · Guy Van den Broeck -
2023 Poster: DesCo: Learning Object Recognition with Rich Language Descriptions »
Liunian Li · Zi-Yi Dou · Nanyun Peng · Kai-Wei Chang -
2023 Poster: Chameleon: Plug-and-Play Compositional Reasoning with Large Language Models »
Pan Lu · Baolin Peng · Hao Cheng · Michel Galley · Kai-Wei Chang · Ying Nian Wu · Song-Chun Zhu · Jianfeng Gao -
2023 Poster: AVIS: Autonomous Visual Information Seeking with Large Language Models »
Ziniu Hu · Ahmet Iscen · Chen Sun · Kai-Wei Chang · Yizhou Sun · Cordelia Schmid · David Ross · Alireza Fathi -
2022 Spotlight: Improving Multi-Task Generalization via Regularizing Spurious Correlation »
Ziniu Hu · Zhe Zhao · Xinyang Yi · Tiansheng Yao · Lichan Hong · Yizhou Sun · Ed Chi -
2022 Workshop: New Frontiers in Graph Learning »
Jiaxuan You · Marinka Zitnik · Rex Ying · Yizhou Sun · Hanjun Dai · Stefanie Jegelka -
2022 Poster: Improving Multi-Task Generalization via Regularizing Spurious Correlation »
Ziniu Hu · Zhe Zhao · Xinyang Yi · Tiansheng Yao · Lichan Hong · Yizhou Sun · Ed Chi -
2022 Poster: Semantic Probabilistic Layers for Neuro-Symbolic Learning »
Kareem Ahmed · Stefano Teso · Kai-Wei Chang · Guy Van den Broeck · Antonio Vergari -
2022 Poster: GStarX: Explaining Graph Neural Networks with Structure-Aware Cooperative Games »
Shichang Zhang · Yozen Liu · Neil Shah · Yizhou Sun -
2022 Poster: Controllable Text Generation with Neurally-Decomposed Oracle »
Tao Meng · Sidi Lu · Nanyun Peng · Kai-Wei Chang -
2022 Poster: Learn to Explain: Multimodal Reasoning via Thought Chains for Science Question Answering »
Pan Lu · Swaroop Mishra · Tanglin Xia · Liang Qiu · Kai-Wei Chang · Song-Chun Zhu · Oyvind Tafjord · Peter Clark · Ashwin Kalyan -
2020 Poster: Automatic Perturbation Analysis for Scalable Certified Robustness and Beyond »
Kaidi Xu · Zhouxing Shi · Huan Zhang · Yihan Wang · Kai-Wei Chang · Minlie Huang · Bhavya Kailkhura · Xue Lin · Cho-Jui Hsieh -
2020 Poster: Learning Continuous System Dynamics from Irregularly-Sampled Partial Observations »
Zijie Huang · Yizhou Sun · Wei Wang -
2019 Workshop: Graph Representation Learning »
Will Hamilton · Rianne van den Berg · Michael Bronstein · Stefanie Jegelka · Thomas Kipf · Jure Leskovec · Renjie Liao · Yizhou Sun · Petar Veličković -
2019 Poster: Layer-Dependent Importance Sampling for Training Deep and Large Graph Convolutional Networks »
Difan Zou · Ziniu Hu · Yewen Wang · Song Jiang · Yizhou Sun · Quanquan Gu -
2016 Poster: Man is to Computer Programmer as Woman is to Homemaker? Debiasing Word Embeddings »
Tolga Bolukbasi · Kai-Wei Chang · James Y Zou · Venkatesh Saligrama · Adam T Kalai -
2016 Poster: A Credit Assignment Compiler for Joint Prediction »
Kai-Wei Chang · He He · Stephane Ross · Hal Daumé III · John Langford