Timezone: »
Influence functions efficiently estimate the effect of removing a single training data point on a model's learned parameters. While influence estimates align well with leave-one-out retraining for linear models, recent works have shown this alignment is often poor in neural networks. In this work, we investigate the specific factors that cause this discrepancy by decomposing it into five separate terms. We study the contributions of each term on a variety of architectures and datasets and how they vary with factors such as network width and training time. While practical influence function estimates may be a poor match to leave-one-out retraining for nonlinear networks, we show that they are often a good approximation to a different object we term the proximal Bregman response function (PBRF). Since the PBRF can still be used to answer many of the questions motivating influence functions, such as identifying influential or mislabeled examples, our results suggest that current algorithms for influence function estimation give more informative results than previous error analyses would suggest.
Author Information
Juhan Bae (University of Toronto, Vector Institute)
Nathan Ng (Massachusetts Institute of Technology)
Alston Lo (University of Toronto)
Marzyeh Ghassemi (MIT)
Roger Grosse (University of Toronto)
More from the Same Authors
-
2021 : Improving the Fairness of Deep Chest X-ray Classifiers »
Haoran Zhang · Natalie Dullerud · Karsten Roth · Stephen Pfohl · Marzyeh Ghassemi -
2022 : Multimodal Checklists for Fair Clinical Decision Support »
Qixuan Jin · Marzyeh Ghassemi -
2022 : Deep Metric Learning to predict cardiac pressure with ECG »
Hyewon Jeong · Marzyeh Ghassemi · Collin Stultz -
2022 : Identifying Disparities in Sepsis Treatment using Inverse Reinforcement Learning »
Hyewon Jeong · Taylor Killian · Sanjat Kanjilal · Siddharth Nayak · Marzyeh Ghassemi -
2022 : Evaluating and Improving Robustness of Self-Supervised Representations to Spurious Correlations »
Kimia Hamidieh · Haoran Zhang · Marzyeh Ghassemi -
2022 : Learning to Defer in Ranking Systems »
Aparna Balagopalan · Haoran Zhang · Elizabeth Bondi-Kelly · Thomas Hartvigsen · Marzyeh Ghassemi -
2022 : Fair Active learning by exploiting causal data structure »
Sindhu C M Gowda · Haoran Zhang · Marzyeh Ghassemi -
2022 : Evaluation of Active Learning and Domain Adaptation on Health Data »
Kristina Holsapple · Haoran Zhang · Marzyeh Ghassemi -
2022 : Aging with GRACE: Lifelong Model Editing with Discrete Key-Value Adaptors »
Thomas Hartvigsen · Swami Sankaranarayanan · Hamid Palangi · Yoon Kim · Marzyeh Ghassemi -
2022 : Feature Restricted Group Dropout for Robust Electronic Health Record Predictions »
Bret Nestor · Anna Goldenberg · Marzyeh Ghassemi -
2022 : Identifying Disparities in Sepsis Treatment by Learning the Expert Policy »
Hyewon Jeong · Siddharth Nayak · Taylor Killian · Sanjat Kanjilal · Marzyeh Ghassemi -
2022 : Identifying Disparities in Sepsis Treatment by Learning the Expert Policy »
Hyewon Jeong · Siddharth Nayak · Taylor Killian · Sanjat Kanjilal · Marzyeh Ghassemi -
2022 : "Why did the Model Fail?": Attributing Model Performance Changes to Distribution Shifts »
Haoran Zhang · Harvineet Singh · Marzyeh Ghassemi · Shalmali Joshi -
2022 : When Personalization Harms: Reconsidering the Use of Group Attributes of Prediction »
Vinith Suriyakumar · Marzyeh Ghassemi · Berk Ustun -
2022 : Real world relevance of generative counterfactual explanations »
Swami Sankaranarayanan · Thomas Hartvigsen · Lauren Oakden-Rayner · Marzyeh Ghassemi · Phillip Isola -
2022 : Just Following AI Orders: When Unbiased People Are Influenced By Biased AI »
Hammaad Adam · Aparna Balagopalan · Emily Alsentzer · Fotini Christia · Marzyeh Ghassemi -
2023 Poster: Similarity-based cooperative equilibrium »
Caspar Oesterheld · Johannes Treutlein · Roger Grosse · Vincent Conitzer · Jakob Foerster -
2023 Poster: Aging with GRACE: Lifelong Model Editing with Discrete Key-Value Adaptors »
Thomas Hartvigsen · Swami Sankaranarayanan · Hamid Palangi · Yoon Kim · Marzyeh Ghassemi -
2023 Poster: VisAlign: Dataset for Measuring the Degree of Alignment between AI and Humans in Visual Perception »
Jiyoung Lee · Seungho Kim · Seunghyun Won · Joonseok Lee · Marzyeh Ghassemi · James Thorne · Jaeseok Choi · O-Kil Kwon · Edward Choi -
2023 Affinity Workshop: Muslims in ML »
Sanae Lotfi · Hammaad Adam · Marzyeh Ghassemi · Shakir Mohamed · S. M. Ali Eslami -
2022 : Dissecting In-the-Wild Stress from Multimodal Sensor Data »
Sujay Nagaraj · Thomas Hartvigsen · Adrian Boch · Luca Foschini · Marzyeh Ghassemi · Sarah Goodday · Stephen Friend · Anna Goldenberg -
2022 : Just Following AI Orders: When Unbiased People Are Influenced By Biased AI »
Hammaad Adam · Aparna Balagopalan · Emily Alsentzer · Fotini Christia · Marzyeh Ghassemi -
2022 : Unsupervised Deep Metric Learning for the inference of hemodynamic value with Electrocardiogram signals »
Hyewon Jeong · Marzyeh Ghassemi · Collin Stultz -
2022 : Unsupervised Deep Metric Learning for the inference of hemodynamic value with Electrocardiogram signals »
Hyewon Jeong · Marzyeh Ghassemi · Collin Stultz -
2022 : Aging with GRACE: Lifelong Model Editing with Discrete Key-Value Adaptors »
Thomas Hartvigsen · Swami Sankaranarayanan · Hamid Palangi · Yoon Kim · Marzyeh Ghassemi -
2022 : Fair Multimodal Checklists for Interpretable Clinical Time Series Prediction »
Qixuan Jin · Haoran Zhang · Thomas Hartvigsen · Marzyeh Ghassemi -
2022 : Fair Multimodal Checklists for Interpretable Clinical Time Series Prediction »
Qixuan Jin · Haoran Zhang · Thomas Hartvigsen · Marzyeh Ghassemi -
2022 Workshop: Robustness in Sequence Modeling »
Nathan Ng · Haoran Zhang · Vinith Suriyakumar · Chantal Shaib · Kyunghyun Cho · Yixuan Li · Alice Oh · Marzyeh Ghassemi -
2022 Workshop: Learning from Time Series for Health »
Sana Tonekaboni · Thomas Hartvigsen · Satya Narayan Shukla · Gunnar Rätsch · Marzyeh Ghassemi · Anna Goldenberg -
2022 Poster: Amortized Proximal Optimization »
Juhan Bae · Paul Vicol · Jeff Z. HaoChen · Roger Grosse -
2022 Poster: Proximal Learning With Opponent-Learning Awareness »
Stephen Zhao · Chris Lu · Roger Grosse · Jakob Foerster -
2022 Poster: Path Independent Equilibrium Models Can Better Exploit Test-Time Computation »
Cem Anil · Ashwini Pokle · Kaiqu Liang · Johannes Treutlein · Yuhuai Wu · Shaojie Bai · J. Zico Kolter · Roger Grosse -
2021 : Data Opportunities: unsolved medical problems and where new data can help »
Bin Yu · Regina Barzilay · Marzyeh Ghassemi · Emma Pierson -
2021 Workshop: Machine learning from ground truth: New medical imaging datasets for unsolved medical problems. »
Katy Haynes · Ziad Obermeyer · Emma Pierson · Marzyeh Ghassemi · Matthew Lungren · Sendhil Mullainathan · Matthew McDermott -
2021 Poster: Learning Optimal Predictive Checklists »
Haoran Zhang · Quaid Morris · Berk Ustun · Marzyeh Ghassemi -
2021 Poster: Characterizing Generalization under Out-Of-Distribution Shifts in Deep Metric Learning »
Timo Milbich · Karsten Roth · Samarth Sinha · Ludwig Schmidt · Marzyeh Ghassemi · Bjorn Ommer -
2021 Poster: Differentiable Annealed Importance Sampling and the Perils of Gradient Noise »
Guodong Zhang · Kyle Hsu · Jianing Li · Chelsea Finn · Roger Grosse -
2021 Poster: Medical Dead-ends and Learning to Identify High-Risk States and Treatments »
Mehdi Fatemi · Taylor Killian · Jayakumar Subramanian · Marzyeh Ghassemi -
2020 : Invited Talk: Roger Grosse - Why Isn’t Everyone Using Second-Order Optimization? »
Roger Grosse -
2020 Poster: Delta-STN: Efficient Bilevel Optimization for Neural Networks using Structured Response Jacobians »
Juhan Bae · Roger Grosse -
2020 Poster: Regularized linear autoencoders recover the principal components, eventually »
Xuchan Bao · James Lucas · Sushant Sachdeva · Roger Grosse -
2020 : Policy Panel »
Roya Pakzad · Dia Kayyali · Marzyeh Ghassemi · Shakir Mohamed · Mohammad Norouzi · Ted Pedersen · Anver Emon · Abubakar Abid · Darren Byler · Samhaa R. El-Beltagy · Nayel Shafei · Mona Diab -
2020 Affinity Workshop: Muslims in ML »
Marzyeh Ghassemi · Mohammad Norouzi · Shakir Mohamed · Aya Salama · Tasmie Sarker -
2020 : Welcome »
Marzyeh Ghassemi -
2019 Poster: Fast Convergence of Natural Gradient Descent for Over-Parameterized Neural Networks »
Guodong Zhang · James Martens · Roger Grosse -
2019 Poster: Which Algorithmic Choices Matter at Which Batch Sizes? Insights From a Noisy Quadratic Model »
Guodong Zhang · Lala Li · Zachary Nado · James Martens · Sushant Sachdeva · George Dahl · Chris Shallue · Roger Grosse -
2019 Poster: Preventing Gradient Attenuation in Lipschitz Constrained Convolutional Networks »
Qiyang Li · Saminul Haque · Cem Anil · James Lucas · Roger Grosse · Joern-Henrik Jacobsen -
2019 Poster: The Cells Out of Sample (COOS) dataset and benchmarks for measuring out-of-sample generalization of image classifiers »
Alex Lu · Amy Lu · Wiebke Schormann · Marzyeh Ghassemi · David Andrews · Alan Moses -
2019 Poster: Don't Blame the ELBO! A Linear VAE Perspective on Posterior Collapse »
James Lucas · George Tucker · Roger Grosse · Mohammad Norouzi -
2018 Workshop: Machine Learning for Health (ML4H): Moving beyond supervised learning in healthcare »
Andrew Beam · Tristan Naumann · Marzyeh Ghassemi · Matthew McDermott · Madalina Fiterau · Irene Y Chen · Brett Beaulieu-Jones · Michael Hughes · Farah Shamout · Corey Chivers · Jaz Kandola · Alexandre Yahi · Samuel Finlayson · Bruno Jedynak · Peter Schulam · Natalia Antropova · Jason Fries · Adrian Dalca · Irene Chen -
2018 Poster: Isolating Sources of Disentanglement in Variational Autoencoders »
Tian Qi Chen · Xuechen (Chen) Li · Roger Grosse · David Duvenaud -
2018 Oral: Isolating Sources of Disentanglement in Variational Autoencoders »
Tian Qi Chen · Xuechen (Chen) Li · Roger Grosse · David Duvenaud -
2018 Poster: Reversible Recurrent Neural Networks »
Matthew MacKay · Paul Vicol · Jimmy Ba · Roger Grosse -
2017 Workshop: Machine Learning for Health (ML4H) - What Parts of Healthcare are Ripe for Disruption by Machine Learning Right Now? »
Jason Fries · Alex Wiltschko · Andrew Beam · Isaac S Kohane · Jasper Snoek · Peter Schulam · Madalina Fiterau · David Kale · Rajesh Ranganath · Bruno Jedynak · Michael Hughes · Tristan Naumann · Natalia Antropova · Adrian Dalca · SHUBHI ASTHANA · Prateek Tandon · Jaz Kandola · Uri Shalit · Marzyeh Ghassemi · Tim Althoff · Alexander Ratner · Jumana Dakka -
2017 Poster: Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation »
Yuhuai Wu · Elman Mansimov · Roger Grosse · Shun Liao · Jimmy Ba -
2017 Spotlight: Scalable trust-region method for deep reinforcement learning using Kronecker-factored approximation »
Yuhuai Wu · Elman Mansimov · Roger Grosse · Shun Liao · Jimmy Ba -
2017 Poster: The Reversible Residual Network: Backpropagation Without Storing Activations »
Aidan Gomez · Mengye Ren · Raquel Urtasun · Roger Grosse -
2016 Workshop: Machine Learning for Health »
Uri Shalit · Marzyeh Ghassemi · Jason Fries · Rajesh Ranganath · Theofanis Karaletsos · David Kale · Peter Schulam · Madalina Fiterau -
2016 Symposium: Deep Learning Symposium »
Yoshua Bengio · Yann LeCun · Navdeep Jaitly · Roger Grosse -
2016 Poster: Measuring the reliability of MCMC inference with bidirectional Monte Carlo »
Roger Grosse · Siddharth Ancha · Daniel Roy -
2015 Poster: Learning Wake-Sleep Recurrent Attention Models »
Jimmy Ba · Russ Salakhutdinov · Roger Grosse · Brendan J Frey -
2015 Spotlight: Learning Wake-Sleep Recurrent Attention Models »
Jimmy Ba · Russ Salakhutdinov · Roger Grosse · Brendan J Frey -
2013 Poster: Annealing between distributions by averaging moments »
Roger Grosse · Chris Maddison · Russ Salakhutdinov -
2013 Oral: Annealing between distributions by averaging moments »
Roger Grosse · Chris Maddison · Russ Salakhutdinov