Timezone: »
Dataset distillation aims to learn a small synthetic dataset that preserves most of the information from the original dataset. Dataset distillation can be formulated as a bi-level meta-learning problem where the outer loop optimizes the meta-dataset and the inner loop trains a model on the distilled data. Meta-gradient computation is one of the key challenges in this formulation, as differentiating through the inner loop learning procedure introduces significant computation and memory costs. In this paper, we address these challenges using neural Feature Regression with Pooling (FRePo), achieving the state-of-the-art performance with an order of magnitude less memory requirement and two orders of magnitude faster training than previous methods. The proposed algorithm is analogous to truncated backpropagation through time with a pool of models to alleviate various types of overfitting in dataset distillation. FRePo significantly outperforms the previous methods on CIFAR100, Tiny ImageNet, and ImageNet-1K. Furthermore, we show that high-quality distilled data can greatly improve various downstream applications, such as continual learning and membership inference defense. Please check out our webpage at https://sites.google.com/view/frepo.
Author Information
Yongchao Zhou (University of Toronto)
Ehsan Nezhadarya (LG Electronics)
Jimmy Ba (University of Toronto / Vector Institute)
More from the Same Authors
-
2021 : BLAST: Latent Dynamics Models from Bootstrapping »
Keiran Paster · Lev McKinney · Sheila McIlraith · Jimmy Ba -
2022 : Large Language Models Are Human-Level Prompt Engineers »
Yongchao Zhou · Andrei Muresanu · Ziwen Han · Silviu Pitis · Harris Chan · Keiran Paster · Jimmy Ba -
2022 : Return Augmentation gives Supervised RL Temporal Compositionality »
Keiran Paster · Silviu Pitis · Sheila McIlraith · Jimmy Ba -
2022 : Temporary Goals for Exploration »
Haoyang Xu · Jimmy Ba · Silviu Pitis · Harris Chan -
2022 : Return Augmentation gives Supervised RL Temporal Compositionality »
Keiran Paster · Silviu Pitis · Sheila McIlraith · Jimmy Ba -
2022 : Guiding Exploration Towards Impactful Actions »
Vaibhav Saxena · Jimmy Ba · Danijar Hafner -
2022 : Steering Large Language Models using APE »
Yongchao Zhou · Andrei Muresanu · Ziwen Han · Keiran Paster · Silviu Pitis · Harris Chan · Jimmy Ba -
2022 : Rational Multi-Objective Agents Must Admit Non-Markov Reward Representations »
Silviu Pitis · Duncan Bailey · Jimmy Ba -
2022 : Invited Talk by Jimmy Ba »
Jimmy Ba -
2022 Poster: High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation »
Jimmy Ba · Murat Erdogdu · Taiji Suzuki · Zhichao Wang · Denny Wu · Greg Yang -
2022 Poster: You Can’t Count on Luck: Why Decision Transformers and RvS Fail in Stochastic Environments »
Keiran Paster · Sheila McIlraith · Jimmy Ba -
2021 Poster: Clockwork Variational Autoencoders »
Vaibhav Saxena · Jimmy Ba · Danijar Hafner -
2021 Poster: Learning Domain Invariant Representations in Goal-conditioned Block MDPs »
Beining Han · Chongyi Zheng · Harris Chan · Keiran Paster · Michael Zhang · Jimmy Ba -
2021 Poster: How does a Neural Network's Architecture Impact its Robustness to Noisy Labels? »
Jingling Li · Mozhi Zhang · Keyulu Xu · John Dickerson · Jimmy Ba -
2020 : Contributed Talk #2: Evaluating Agents Without Rewards »
Brendon Matusch · Danijar Hafner · Jimmy Ba -
2020 : Contributed Talk: Planning from Pixels using Inverse Dynamics Models »
Keiran Paster · Sheila McIlraith · Jimmy Ba -
2020 Session: Orals & Spotlights Track 34: Deep Learning »
Tuo Zhao · Jimmy Ba -
2019 : Poster Session »
Eduard Gorbunov · Alexandre d'Aspremont · Lingxiao Wang · Liwei Wang · Boris Ginsburg · Alessio Quaglino · Camille Castera · Saurabh Adya · Diego Granziol · Rudrajit Das · Raghu Bollapragada · Fabian Pedregosa · Martin Takac · Majid Jahani · Sai Praneeth Karimireddy · Hilal Asi · Balint Daroczy · Leonard Adolphs · Aditya Rawal · Nicolas Brandt · Minhan Li · Giuseppe Ughi · Orlando Romero · Ivan Skorokhodov · Damien Scieur · Kiwook Bae · Konstantin Mishchenko · Rohan Anil · Vatsal Sharan · Aditya Balu · Chao Chen · Zhewei Yao · Tolga Ergen · Paul Grigas · Chris Junchi Li · Jimmy Ba · Stephen J Roberts · Sharan Vaswani · Armin Eftekhari · Chhavi Sharma -
2019 Poster: Lookahead Optimizer: k steps forward, 1 step back »
Michael Zhang · James Lucas · Jimmy Ba · Geoffrey E Hinton -
2019 Poster: Graph Normalizing Flows »
Jenny Liu · Aviral Kumar · Jimmy Ba · Jamie Kiros · Kevin Swersky -
2018 Poster: Reversible Recurrent Neural Networks »
Matthew MacKay · Paul Vicol · Jimmy Ba · Roger Grosse