Timezone: »
Poster
On the Sample Complexity of Stabilizing LTI Systems on a Single Trajectory
Yang Hu · Adam Wierman · Guannan Qu
Stabilizing an unknown dynamical system is one of the central problems in control theory. In this paper, we study the sample complexity of the learn-to-stabilize problem in Linear Time-Invariant (LTI) systems on a single trajectory. Current state-of-the-art approaches require a sample complexity linear in $n$, the state dimension, which incurs a state norm that blows up exponentially in $n$. We propose a novel algorithm based on spectral decomposition that only needs to learn ``a small part'' of the dynamical matrix acting on its unstable subspace. We show that, under proper assumptions, our algorithm stabilizes an LTI system on a single trajectory with $O(k \log n)$ samples, where $k$ is the instability index of the system. This represents the first sub-linear sample complexity result for the stabilization of LTI systems under the regime when $k = o(n)$.
Author Information
Yang Hu (SEAS, Harvard University)
Adam Wierman (Caltech)
Guannan Qu (Carnegie Mellon University)
More from the Same Authors
-
2021 Spotlight: Perturbation-based Regret Analysis of Predictive Control in Linear Time Varying Systems »
Yiheng Lin · Yang Hu · Guanya Shi · Haoyuan Sun · Guannan Qu · Adam Wierman -
2022 : Robustifying machine-learned algorithms for efficient grid operation »
Nicolas Christianson · Christopher Yeh · Tongxin Li · Mahdi Torabi Rad · Azarang Golmohammadi · Adam Wierman -
2022 : Stability Constrained Reinforcement Learning for Real-Time Voltage Control »
Jie Feng · Yuanyuan Shi · Guannan Qu · Steven Low · Anima Anandkumar · Adam Wierman -
2022 : SustainGym: A Benchmark Suite of Reinforcement Learning for Sustainability Applications »
Christopher Yeh · Victor Li · Rajeev Datta · Yisong Yue · Adam Wierman -
2022 Poster: Bounded-Regret MPC via Perturbation Analysis: Prediction Error, Constraints, and Nonlinearity »
Yiheng Lin · Yang Hu · Guannan Qu · Tongxin Li · Adam Wierman -
2021 Poster: Multi-Agent Reinforcement Learning in Stochastic Networked Systems »
Yiheng Lin · Guannan Qu · Longbo Huang · Adam Wierman -
2021 Poster: Pareto-Optimal Learning-Augmented Algorithms for Online Conversion Problems »
Bo Sun · Russell Lee · Mohammad Hajiesmaili · Adam Wierman · Danny Tsang -
2021 Poster: Perturbation-based Regret Analysis of Predictive Control in Linear Time Varying Systems »
Yiheng Lin · Yang Hu · Guanya Shi · Haoyuan Sun · Guannan Qu · Adam Wierman -
2020 Poster: Online Optimization with Memory and Competitive Control »
Guanya Shi · Yiheng Lin · Soon-Jo Chung · Yisong Yue · Adam Wierman -
2020 Poster: Scalable Multi-Agent Reinforcement Learning for Networked Systems with Average Reward »
Guannan Qu · Yiheng Lin · Adam Wierman · Na Li -
2020 Poster: The Power of Predictions in Online Control »
Chenkai Yu · Guanya Shi · Soon-Jo Chung · Yisong Yue · Adam Wierman -
2019 Poster: Beyond Online Balanced Descent: An Optimal Algorithm for Smoothed Online Optimization »
Gautam Goel · Yiheng Lin · Haoyuan Sun · Adam Wierman -
2019 Spotlight: Beyond Online Balanced Descent: An Optimal Algorithm for Smoothed Online Optimization »
Gautam Goel · Yiheng Lin · Haoyuan Sun · Adam Wierman