Timezone: »
Understanding the consequences of mutation for molecular fitness and function is a fundamental problem in biology. Recently, generative probabilistic models have emerged as a powerful tool for estimating fitness from evolutionary sequence data, with accuracy sufficient to predict both laboratory measurements of function and disease risk in humans, and to design novel functional proteins. Existing techniques rest on an assumed relationship between density estimation and fitness estimation, a relationship that we interrogate in this article. We prove that fitness is not identifiable from observational sequence data alone, placing fundamental limits on our ability to disentangle fitness landscapes from phylogenetic history. We show on real datasets that perfect density estimation in the limit of infinite data would, with high confidence, result in poor fitness estimation; current models perform accurate fitness estimation because of, not despite, misspecification. Our results challenge the conventional wisdom that bigger models trained on bigger datasets will inevitably lead to better fitness estimation, and suggest novel estimation strategies going forward.
Author Information
Eli Weinstein (Columbia University)
Alan Amin (Harvard University)
Jonathan Frazer (Harvard Medical School)
Jonny's background is in theoretical physics. His previous work included developing computational tools for testing theories of the very early universe, as well as pioneering the use of information theory and probabilistic modelling for studying cosmic inflation in string theory. His love of high-dimensional probability and information theory has now brought him to the data-rich world of genomics. In his current work, Jonny is developing new models of evolutionary sequence data - both protein sequences and whole bacterial genomes. In the case of protein sequences, the goal is to develop unsupervised models of protein fitness for the purpose of mutation effect prediction (and hence protein design). In the case of bacterial genomes, the goal is to uncover epistatic interactions involved in antibiotic resistance.
Debora Marks (Harvard University)
Debora is a mathematician and computational biologist with a track record of using novel algorithms and statistics to successfully address unsolved biological problems. She has a passion for interpreting genetic variation in a way that impacts biomedical applications. During her PhD, she quantified the pan-genomic scope of microRNA targeting - the combinatorial regulation of protein expression and co-discovered the first microRNA in a virus. As a postdoc she made a breakthrough in the classic, unsolved problem of ab initio 3D structure prediction of proteins using undirected graphical probability models for evolutionary sequences. She has developed this approach to determine functional interactions, biomolecular structures, including the 3D structure of RNA and RNA-protein complexes and the conformational ensembles of apparently disordered proteins. Her new lab at Harvard is interested in developing methods in deep learning to address a wide range of biological challenges including designing drug affinity libraries for large numbers of human genes, predicting epistasis in antibiotic resistance, the effects of genetic variation on human disease etiology and drug response and sequence design for biosynthetic applications.
More from the Same Authors
-
2022 : How can we use natural evolution and genetic experiments to design protein functions? »
Ada Shaw · June Shin · Debora Marks -
2022 : TranceptEVE: Combining Family-specific and Family-agnostic Models of Protein Sequences for Improved Fitness Prediction »
Pascal Notin · Lodevicus van Niekerk · Aaron Kollasch · Daniel Ritter · Yarin Gal · Debora Marks -
2022 : Kernelized Stein Discrepancies for Biological Sequences »
Alan Amin · Eli Weinstein · Debora Marks -
2022 : scPerturb: Information Resource for Harmonized Single-Cell Perturbation Data »
Tessa Green · Stefan Peidli · Ciyue Shen · Torsten Gross · Joseph Min · Samuele Garda · Jake Taylor-King · Debora Marks · Augustin Luna · Nils Blüthgen · Chris Sander -
2022 : Designing and Evolving Neuron-Specific Proteases »
Han Spinner · Colin Hemez · Julia McCreary · David Liu · Debora Marks -
2022 Workshop: Learning Meaningful Representations of Life »
Elizabeth Wood · Adji Bousso Dieng · Aleksandrina Goeva · Alex X Lu · Anshul Kundaje · Chang Liu · Debora Marks · Ed Boyden · Eli N Weinstein · Lorin Crawford · Mor Nitzan · Rebecca Boiarsky · Romain Lopez · Tamara Broderick · Ray Jones · Wouter Boomsma · Yixin Wang · Stephen Ra -
2022 Panel: Panel 2A-2: VaiPhy: a Variational… & Non-identifiability and the… »
Oskar Kviman · Eli Weinstein -
2021 Workshop: Learning Meaningful Representations of Life (LMRL) »
Elizabeth Wood · Adji Bousso Dieng · Aleksandrina Goeva · Anshul Kundaje · Barbara Engelhardt · Chang Liu · David Van Valen · Debora Marks · Edward Boyden · Eli N Weinstein · Lorin Crawford · Mor Nitzan · Romain Lopez · Tamara Broderick · Ray Jones · Wouter Boomsma · Yixin Wang -
2021 Poster: A generative nonparametric Bayesian model for whole genomes »
Alan Amin · Eli N Weinstein · Debora Marks -
2019 : Synthetic Systems »
Pamela Silver · Debora Marks · Chang Liu · Possu Huang -
2019 Workshop: Learning Meaningful Representations of Life »
Elizabeth Wood · Yakir Reshef · Jonathan Bloom · Jasper Snoek · Barbara Engelhardt · Scott Linderman · Suchi Saria · Alexander Wiltschko · Casey Greene · Chang Liu · Kresten Lindorff-Larsen · Debora Marks -
2018 : Invited Talk Session 2 »
Debora Marks · Olexandr Isayev · Tess Smidt · Nathaniel Thomas -
2018 : TBC 4 »
Debora Marks