Timezone: »

 
Poster
Energy-Based Contrastive Learning of Visual Representations
Beomsu Kim · Jong Chul Ye

Thu Dec 01 09:00 AM -- 11:00 AM (PST) @ Hall J #233
Contrastive learning is a method of learning visual representations by training Deep Neural Networks (DNNs) to increase the similarity between representations of positive pairs (transformations of the same image) and reduce the similarity between representations of negative pairs (transformations of different images). Here we explore Energy-Based Contrastive Learning (EBCLR) that leverages the power of generative learning by combining contrastive learning with Energy-Based Models (EBMs). EBCLR can be theoretically interpreted as learning the joint distribution of positive pairs, and it shows promising results on small and medium-scale datasets such as MNIST, Fashion-MNIST, CIFAR-10, and CIFAR-100. Specifically, we find EBCLR demonstrates from $\times 4$ up to $\times 20$ acceleration compared to SimCLR and MoCo v2 in terms of training epochs. Furthermore, in contrast to SimCLR, we observe EBCLR achieves nearly the same performance with $254$ negative pairs (batch size $128$) and $30$ negative pairs (batch size $16$) per positive pair, demonstrating the robustness of EBCLR to small numbers of negative pairs. Hence, EBCLR provides a novel avenue for improving contrastive learning methods that usually require large datasets with a significant number of negative pairs per iteration to achieve reasonable performance on downstream tasks. Code: https://github.com/1202kbs/EBCLR

Author Information

Beomsu Kim (Korea Advanced Institute of Science and Technology)
Jong Chul Ye (KAIST AI)

More from the Same Authors