Timezone: »

Poster
Private Graph All-Pairwise-Shortest-Path Distance Release with Improved Error Rate
Chenglin Fan · Ping Li · Xiaoyun Li

Thu Dec 01 02:00 PM -- 04:00 PM (PST) @ Hall J #1037

Releasing all pairwise shortest path (APSP) distances between vertices on general graphs under weight Differential Privacy (DP) is known as a challenging task. In previous work, to achieve DP with some fixed budget, with high probability the maximal absolute error among all published pairwise distances is roughly O(n) where n is the number of nodes. It was shown that this error could be reduced for some special graphs, which, however, is hard for general graphs. Therefore, whether the approximation error can be reduced to sublinear is posted as an interesting open problem.In this paper, we break the linear barrier on the distance approximation error of previous result, by proposing an algorithm that releases a constructed synthetic graph privately. Computing all pairwise distances on the constructed graph only introduces O(n^{1/2}) error in answering all pairwise shortest path distances for fixed privacy parameter. Our method is based on a novel graph diameter (link length) augmentation via constructing shortcuts'' for the paths. By adding a set of shortcut edges to the original graph, we show that any node pair has a shortest path with link length O(n^{1/2}). Then by adding noises with some positive mean to the edge weights, the new graph is differentially private and can be published to answer all pairwise shortest path distances with O(n^{1/2}) approximation error using standard APSP computation. Numerical examples are also provided.Additionally, we also consider the graph with small feedback vertex set number. A feedback vertex set (FVS) of a graph is a set of vertices whose removal leaves a graph without cycles, and the feedback vertex set number of a graph, k, is the size of a smallest feedback vertex set. We propose a DP algorithm with error rate O(k), which improves the error of general graphs provided k=o(n^{1/2}).

#### Author Information

##### Xiaoyun Li (Rutgers University)

Xiaoyun Li is a 4th year PhD student from the Department of Statistics at Rutgers University, supervised by Professor Ping Li. His research interests include statistical learning, hashing, randomized algorithms and optimization.