Timezone: »

Few-Shot Audio-Visual Learning of Environment Acoustics
Sagnik Majumder · Changan Chen · Ziad Al-Halah · Kristen Grauman

Wed Nov 30 09:00 AM -- 11:00 AM (PST) @ Hall J #110

Room impulse response (RIR) functions capture how the surrounding physical environment transforms the sounds heard by a listener, with implications for various applications in AR, VR, and robotics. Whereas traditional methods to estimate RIRs assume dense geometry and/or sound measurements throughout the environment, we explore how to infer RIRs based on a sparse set of images and echoes observed in the space. Towards that goal, we introduce a transformer-based method that uses self-attention to build a rich acoustic context, then predicts RIRs of arbitrary query source-receiver locations through cross-attention. Additionally, we design a novel training objective that improves the match in the acoustic signature between the RIR predictions and the targets. In experiments using a state-of-the-art audio-visual simulator for 3D environments, we demonstrate that our method successfully generates arbitrary RIRs, outperforming state-of-the-art methods and---in a major departure from traditional methods---generalizing to novel environments in a few-shot manner. Project: http://vision.cs.utexas.edu/projects/fs_rir

Author Information

Sagnik Majumder (University of Texas, Austin)
Changan Chen (University of Texas, Austin)
Ziad Al-Halah (KIT)
Kristen Grauman (University of Texas at Austin)

More from the Same Authors