Timezone: »
Poster
Few-shot Relational Reasoning via Connection Subgraph Pretraining
Qian Huang · Hongyu Ren · Jure Leskovec
Few-shot knowledge graph (KG) completion task aims to perform inductive reasoning over the KG: given only a few support triplets of a new relation $\bowtie$ (e.g., (chop,$\bowtie$,kitchen), (read,$\bowtie$,library), the goal is to predict the query triplets of the same unseen relation $\bowtie$, e.g., (sleep,$\bowtie$,?). Current approaches cast the problem in a meta-learning framework, where the model needs to be first jointly trained over many training few-shot tasks, each being defined by its own relation, so that learning/prediction on the target few-shot task can be effective. However, in real-world KGs, curating many training tasks is a challenging ad hoc process. Here we propose Connection Subgraph Reasoner (CSR), which can make predictions for the target few-shot task directly without the need for pre-training on the human curated set of training tasks. The key to CSR is that we explicitly model a shared connection subgraph between support and query triplets, as inspired by the principle of eliminative induction. To adapt to specific KG, we design a corresponding self-supervised pretraining scheme with the objective of reconstructing automatically sampled connection subgraphs. Our pretrained model can then be directly applied to target few-shot tasks on without the need for training few-shot tasks. Extensive experiments on real KGs, including NELL, FB15K-237, and ConceptNet, demonstrate the effectiveness of our framework: we show that even a learning-free implementation of CSR can already perform competitively to existing methods on target few-shot tasks; with pretraining, CSR can achieve significant gains of up to 52% on the more challenging inductive few-shot tasks where the entities are also unseen during (pre)training.
Author Information
Qian Huang (Stanford University)
Hongyu Ren (Stanford University)
Jure Leskovec (Stanford University/Pinterest)
More from the Same Authors
-
2020 : Poster #1 »
Hongyu Ren -
2021 : Therapeutics Data Commons: Machine Learning Datasets and Tasks for Drug Discovery and Development »
Kexin Huang · Tianfan Fu · Wenhao Gao · Yue Zhao · Yusuf Roohani · Jure Leskovec · Connor Coley · Cao Xiao · Jimeng Sun · Marinka Zitnik -
2021 Spotlight: Combiner: Full Attention Transformer with Sparse Computation Cost »
Hongyu Ren · Hanjun Dai · Zihang Dai · Mengjiao (Sherry) Yang · Jure Leskovec · Dale Schuurmans · Bo Dai -
2021 : OGB-LSC: A Large-Scale Challenge for Machine Learning on Graphs »
Weihua Hu · Matthias Fey · Hongyu Ren · Maho Nakata · Yuxiao Dong · Jure Leskovec -
2021 : Extending the WILDS Benchmark for Unsupervised Adaptation »
Shiori Sagawa · Pang Wei Koh · Tony Lee · Irena Gao · Sang Michael Xie · Kendrick Shen · Ananya Kumar · Weihua Hu · Michihiro Yasunaga · Henrik Marklund · Sara Beery · Ian Stavness · Jure Leskovec · Kate Saenko · Tatsunori Hashimoto · Sergey Levine · Chelsea Finn · Percy Liang -
2022 : Tabular deep learning when $d \gg n$ by using an auxiliary knowledge graph »
Camilo Ruiz · Hongyu Ren · Kexin Huang · Jure Leskovec -
2022 : Learning Controllable Adaptive Simulation for Multi-scale Physics »
Tailin Wu · Takashi Maruyama · Qingqing Zhao · Gordon Wetzstein · Jure Leskovec -
2022 : Learning Efficient Hybrid Particle-continuum Representations of Non-equilibrium N-body Systems »
Tailin Wu · Michael Sun · Hsuan-Gu Chou · Pranay Reddy Samala · Sithipont Cholsaipant · Sophia Kivelson · Jacqueline Yau · Rex Ying · E. Paulo Alves · Jure Leskovec · Frederico Fiuza -
2022 : AutoTransfer: AutoML with Knowledge Transfer - An Application to Graph Neural Networks »
Kaidi Cao · Jiaxuan You · Jiaju Liu · Jure Leskovec -
2022 : Efficient Automatic Machine Learning via Design Graphs »
Shirley Wu · Jiaxuan You · Jure Leskovec · Rex Ying -
2022 : Link-level Track: Intro »
Hongyu Ren -
2022 Competition: OGB-LSC 2022: A Large-Scale Challenge for ML on Graphs »
Weihua Hu · Matthias Fey · Hongyu Ren · Maho Nakata · Yuxiao Dong · Jure Leskovec -
2022 : Introduction to OGB-LSC »
Jure Leskovec -
2022 Poster: Inductive Logical Query Answering in Knowledge Graphs »
Michael Galkin · Zhaocheng Zhu · Hongyu Ren · Jian Tang -
2022 Poster: Deep Bidirectional Language-Knowledge Graph Pretraining »
Michihiro Yasunaga · Antoine Bosselut · Hongyu Ren · Xikun Zhang · Christopher D Manning · Percy Liang · Jure Leskovec -
2022 Poster: ZeroC: A Neuro-Symbolic Model for Zero-shot Concept Recognition and Acquisition at Inference Time »
Tailin Wu · Megan Tjandrasuwita · Zhengxuan Wu · Xuelin Yang · Kevin Liu · Rok Sosic · Jure Leskovec -
2022 Poster: Learning to Accelerate Partial Differential Equations via Latent Global Evolution »
Tailin Wu · Takashi Maruyama · Jure Leskovec -
2021 Poster: Combiner: Full Attention Transformer with Sparse Computation Cost »
Hongyu Ren · Hanjun Dai · Zihang Dai · Mengjiao (Sherry) Yang · Jure Leskovec · Dale Schuurmans · Bo Dai -
2021 Poster: Modeling Heterogeneous Hierarchies with Relation-specific Hyperbolic Cones »
Yushi Bai · Zhitao Ying · Hongyu Ren · Jure Leskovec -
2021 Poster: Neural Distance Embeddings for Biological Sequences »
Gabriele Corso · Zhitao Ying · Michal Pándy · Petar Veličković · Jure Leskovec · Pietro Liò -
2020 : Contributed Talk #3 »
Hongyu Ren -
2020 : Q&A #2 »
Heng Ji · Jure Leskovec · Jiajun Wu -
2020 : Invited Talk #4 »
Jure Leskovec -
2020 Poster: Open Graph Benchmark: Datasets for Machine Learning on Graphs »
Weihua Hu · Matthias Fey · Marinka Zitnik · Yuxiao Dong · Hongyu Ren · Bowen Liu · Michele Catasta · Jure Leskovec -
2020 Poster: Coresets for Robust Training of Deep Neural Networks against Noisy Labels »
Baharan Mirzasoleiman · Kaidi Cao · Jure Leskovec -
2020 Poster: Graph Information Bottleneck »
Tailin Wu · Hongyu Ren · Pan Li · Jure Leskovec -
2020 Spotlight: Open Graph Benchmark: Datasets for Machine Learning on Graphs »
Weihua Hu · Matthias Fey · Marinka Zitnik · Yuxiao Dong · Hongyu Ren · Bowen Liu · Michele Catasta · Jure Leskovec -
2020 Poster: Distance Encoding: Design Provably More Powerful Neural Networks for Graph Representation Learning »
Pan Li · Yanbang Wang · Hongwei Wang · Jure Leskovec -
2020 Poster: Handling Missing Data with Graph Representation Learning »
Jiaxuan You · Xiaobai Ma · Yi Ding · Mykel J Kochenderfer · Jure Leskovec -
2020 Poster: Design Space for Graph Neural Networks »
Jiaxuan You · Zhitao Ying · Jure Leskovec -
2020 Poster: Beta Embeddings for Multi-Hop Logical Reasoning in Knowledge Graphs »
Hongyu Ren · Jure Leskovec -
2020 Spotlight: Design Space for Graph Neural Networks »
Jiaxuan You · Zhitao Ying · Jure Leskovec -
2019 : Poster Presentations »
Rahul Mehta · Andrew Lampinen · Binghong Chen · Sergio Pascual-Diaz · Jordi Grau-Moya · Aldo Faisal · Jonathan Tompson · Yiren Lu · Khimya Khetarpal · Martin Klissarov · Pierre-Luc Bacon · Doina Precup · Thanard Kurutach · Aviv Tamar · Pieter Abbeel · Jinke He · Maximilian Igl · Shimon Whiteson · Wendelin Boehmer · Raphaël Marinier · Olivier Pietquin · Karol Hausman · Sergey Levine · Chelsea Finn · Tianhe Yu · Lisa Lee · Benjamin Eysenbach · Emilio Parisotto · Eric Xing · Ruslan Salakhutdinov · Hongyu Ren · Anima Anandkumar · Deepak Pathak · Christopher Lu · Trevor Darrell · Alexei Efros · Phillip Isola · Feng Liu · Bo Han · Gang Niu · Masashi Sugiyama · Saurabh Kumar · Janith Petangoda · Johan Ferret · James McClelland · Kara Liu · Animesh Garg · Robert Lange -
2019 : Presentation and Discussion: Open Graph Benchmark »
Jure Leskovec -
2019 Workshop: Graph Representation Learning »
Will Hamilton · Rianne van den Berg · Michael Bronstein · Stefanie Jegelka · Thomas Kipf · Jure Leskovec · Renjie Liao · Yizhou Sun · Petar Veličković -
2019 Poster: Hyperbolic Graph Convolutional Neural Networks »
Ines Chami · Zhitao Ying · Christopher Ré · Jure Leskovec -
2019 Poster: G2SAT: Learning to Generate SAT Formulas »
Jiaxuan You · Haoze Wu · Clark Barrett · Raghuram Ramanujan · Jure Leskovec -
2019 Poster: GNNExplainer: Generating Explanations for Graph Neural Networks »
Zhitao Ying · Dylan Bourgeois · Jiaxuan You · Marinka Zitnik · Jure Leskovec -
2018 : Coffee Break and Poster Session I »
Pim de Haan · Bin Wang · Dequan Wang · Aadil Hayat · Ibrahim Sobh · Muhammad Asif Rana · Thibault Buhet · Nicholas Rhinehart · Arjun Sharma · Alex Bewley · Michael Kelly · Lionel Blondé · Ozgur S. Oguz · Vaibhav Viswanathan · Jeroen Vanbaar · Konrad Żołna · Negar Rostamzadeh · Rowan McAllister · Sanjay Thakur · Alexandros Kalousis · Chelsea Sidrane · Sujoy Paul · Daphne Chen · Michal Garmulewicz · Henryk Michalewski · Coline Devin · Hongyu Ren · Jiaming Song · Wen Sun · Hanzhang Hu · Wulong Liu · Emilie Wirbel -
2018 Poster: Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation »
Jiaxuan You · Bowen Liu · Zhitao Ying · Vijay Pande · Jure Leskovec -
2018 Poster: Multi-Agent Generative Adversarial Imitation Learning »
Jiaming Song · Hongyu Ren · Dorsa Sadigh · Stefano Ermon -
2018 Poster: Dynamic Network Model from Partial Observations »
Elahe Ghalebi · Baharan Mirzasoleiman · Radu Grosu · Jure Leskovec -
2018 Spotlight: Graph Convolutional Policy Network for Goal-Directed Molecular Graph Generation »
Jiaxuan You · Bowen Liu · Zhitao Ying · Vijay Pande · Jure Leskovec -
2018 Spotlight: Dynamic Network Model from Partial Observations »
Elahe Ghalebi · Baharan Mirzasoleiman · Radu Grosu · Jure Leskovec -
2018 Poster: Hierarchical Graph Representation Learning with Differentiable Pooling »
Zhitao Ying · Jiaxuan You · Christopher Morris · Xiang Ren · Will Hamilton · Jure Leskovec -
2018 Poster: Bias and Generalization in Deep Generative Models: An Empirical Study »
Shengjia Zhao · Hongyu Ren · Arianna Yuan · Jiaming Song · Noah Goodman · Stefano Ermon -
2018 Spotlight: Hierarchical Graph Representation Learning with Differentiable Pooling »
Zhitao Ying · Jiaxuan You · Christopher Morris · Xiang Ren · Will Hamilton · Jure Leskovec -
2018 Spotlight: Bias and Generalization in Deep Generative Models: An Empirical Study »
Shengjia Zhao · Hongyu Ren · Arianna Yuan · Jiaming Song · Noah Goodman · Stefano Ermon -
2018 Poster: Embedding Logical Queries on Knowledge Graphs »
Will Hamilton · Payal Bajaj · Marinka Zitnik · Dan Jurafsky · Jure Leskovec -
2017 : Jure Leskovec, Stanford »
Jure Leskovec -
2017 Poster: Inductive Representation Learning on Large Graphs »
Will Hamilton · Zhitao Ying · Jure Leskovec -
2016 Poster: Confusions over Time: An Interpretable Bayesian Model to Characterize Trends in Decision Making »
Himabindu Lakkaraju · Jure Leskovec -
2013 Workshop: Frontiers of Network Analysis: Methods, Models, and Applications »
Edo M Airoldi · David S Choi · Aaron Clauset · Khalid El-Arini · Jure Leskovec -
2013 Poster: Nonparametric Multi-group Membership Model for Dynamic Networks »
Myunghwan Kim · Jure Leskovec -
2012 Workshop: Social network and social media analysis: Methods, models and applications »
Edo M Airoldi · David S Choi · Khalid El-Arini · Jure Leskovec -
2012 Poster: Learning to Discover Social Circles in Ego Networks »
Julian J McAuley · Jure Leskovec -
2010 Workshop: Networks Across Disciplines: Theory and Applications »
Edo M Airoldi · Anna Goldenberg · Jure Leskovec · Quaid Morris -
2010 Oral: On the Convexity of Latent Social Network Inference »
Seth A Myers · Jure Leskovec -
2010 Poster: On the Convexity of Latent Social Network Inference »
Seth A Myers · Jure Leskovec -
2009 Workshop: Analyzing Networks and Learning With Graphs »
Edo M Airoldi · Jure Leskovec · Jon Kleinberg · Josh Tenenbaum