Timezone: »
Poster
Sharp Analysis of Stochastic Optimization under Global Kurdyka-Lojasiewicz Inequality
Ilyas Fatkhullin · Jalal Etesami · Niao He · Negar Kiyavash
We study the complexity of finding the global solution to stochastic nonconvex optimization when the objective function satisfies global Kurdyka-{\L}ojasiewicz (KL) inequality and the queries from stochastic gradient oracles satisfy mild expected smoothness assumption. We first introduce a general framework to analyze Stochastic Gradient Descent (SGD) and its associated nonlinear dynamics under the setting. As a byproduct of our analysis, we obtain a sample complexity of $\mathcal{O}(\epsilon^{-(4-\alpha)/\alpha})$ for SGD when the objective satisfies the so called $\alpha$-P{\L} condition, where $\alpha$ is the degree of gradient domination. Furthermore, we show that a modified SGD with variance reduction and restarting (PAGER) achieves an improved sample complexity of $\mathcal{O}(\epsilon^{-2/\alpha})$ when the objective satisfies the average smoothness assumption. This leads to the first optimal algorithm for the important case of $\alpha=1$ which appears in applications such as policy optimization in reinforcement learning.
Author Information
Ilyas Fatkhullin (ETH Zurich)
Jalal Etesami (Technische Universität München)
Niao He (ETH Zurich)
Negar Kiyavash (École Polytechnique Fédérale de Lausanne)
More from the Same Authors
-
2021 : EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern Error Feedback »
Peter Richtarik · Igor Sokolov · Ilyas Fatkhullin · Eduard Gorbunov · Zhize Li -
2022 : TiAda: A Time-scale Adaptive Algorithm For Nonconvex Minimax Optimization »
Xiang Li · Junchi YANG · Niao He -
2022 : TiAda: A Time-scale Adaptive Algorithm For Nonconvex Minimax Optimization »
Xiang Li · Junchi YANG · Niao He -
2022 : Uniform Convergence and Generalization for Nonconvex Stochastic Minimax Problems »
Siqi Zhang · Yifan Hu · Liang Zhang · Niao He -
2022 : Niao He, Simple Fixes for Adaptive Gradient Methods for Nonconvex Min-Max Optimization »
Niao He -
2022 Poster: Nest Your Adaptive Algorithm for Parameter-Agnostic Nonconvex Minimax Optimization »
Junchi YANG · Xiang Li · Niao He -
2022 Poster: Causal Discovery in Linear Latent Variable Models Subject to Measurement Error »
Yuqin Yang · AmirEmad Ghassami · Mohamed Nafea · Negar Kiyavash · Kun Zhang · Ilya Shpitser -
2022 Poster: Bring Your Own Algorithm for Optimal Differentially Private Stochastic Minimax Optimization »
Liang Zhang · Kiran Thekumparampil · Sewoong Oh · Niao He -
2022 Poster: Stochastic Second-Order Methods Improve Best-Known Sample Complexity of SGD for Gradient-Dominated Functions »
Saeed Masiha · Saber Salehkaleybar · Niao He · Negar Kiyavash · Patrick Thiran -
2021 Poster: EF21: A New, Simpler, Theoretically Better, and Practically Faster Error Feedback »
Peter Richtarik · Igor Sokolov · Ilyas Fatkhullin -
2021 Poster: Recursive Causal Structure Learning in the Presence of Latent Variables and Selection Bias »
Sina Akbari · Ehsan Mokhtarian · AmirEmad Ghassami · Negar Kiyavash -
2021 Oral: EF21: A New, Simpler, Theoretically Better, and Practically Faster Error Feedback »
Peter Richtarik · Igor Sokolov · Ilyas Fatkhullin -
2020 Poster: A Catalyst Framework for Minimax Optimization »
Junchi Yang · Siqi Zhang · Negar Kiyavash · Niao He -
2020 Poster: Global Convergence and Variance Reduction for a Class of Nonconvex-Nonconcave Minimax Problems »
Junchi Yang · Negar Kiyavash · Niao He -
2020 Poster: The Devil is in the Detail: A Framework for Macroscopic Prediction via Microscopic Models »
Yingxiang Yang · Negar Kiyavash · Le Song · Niao He -
2020 Spotlight: The Devil is in the Detail: A Framework for Macroscopic Prediction via Microscopic Models »
Yingxiang Yang · Negar Kiyavash · Le Song · Niao He