Timezone: »
Recently, implicit graph neural networks (GNNs) have been proposed to capture long-range dependencies in underlying graphs. In this paper, we introduce and justify two weaknesses of implicit GNNs: the constrained expressiveness due to their limited effective range for capturing long-range dependencies, and their lack of ability to capture multiscale information on graphs at multiple resolutions. To show the limited effective range of previous implicit GNNs, we first provide a theoretical analysis and point out the intrinsic relationship between the effective range and the convergence of iterative equations used in these models. To mitigate the mentioned weaknesses, we propose a multiscale graph neural network with implicit layers (MGNNI) which is able to model multiscale structures on graphs and has an expanded effective range for capturing long-range dependencies. We conduct comprehensive experiments for both node classification and graph classification to show that MGNNI outperforms representative baselines and has a better ability for multiscale modeling and capturing of long-range dependencies.
Author Information
Juncheng Liu (National University of Singapore)
Bryan Hooi (National University of Singapore)
Kenji Kawaguchi (National University of Singapore)
Xiaokui Xiao (National University of Singapore)
More from the Same Authors
-
2022 Poster: Discrete Compositional Representations as an Abstraction for Goal Conditioned Reinforcement Learning »
Riashat Islam · Hongyu Zang · Anirudh Goyal · Alex Lamb · Kenji Kawaguchi · Xin Li · Romain Laroche · Yoshua Bengio · Remi Tachet des Combes -
2022 : KeyNote 2 by Bryan Hooi : Temporal Graph Learning: Some Challenges and Recent Directions »
Bryan Hooi -
2022 Poster: Finite-Time Regret of Thompson Sampling Algorithms for Exponential Family Multi-Armed Bandits »
Tianyuan Jin · Pan Xu · Xiaokui Xiao · Anima Anandkumar -
2022 Poster: Set-based Meta-Interpolation for Few-Task Meta-Learning »
Seanie Lee · Bruno Andreis · Kenji Kawaguchi · Juho Lee · Sung Ju Hwang -
2022 Poster: Self-Supervised Aggregation of Diverse Experts for Test-Agnostic Long-Tailed Recognition »
Yifan Zhang · Bryan Hooi · Lanqing Hong · Jiashi Feng -
2021 Poster: Adaptive Data Augmentation on Temporal Graphs »
Yiwei Wang · Yujun Cai · Yuxuan Liang · Henghui Ding · Changhu Wang · Siddharth Bhatia · Bryan Hooi -
2021 Poster: Unleashing the Power of Contrastive Self-Supervised Visual Models via Contrast-Regularized Fine-Tuning »
Yifan Zhang · Bryan Hooi · Dapeng Hu · Jian Liang · Jiashi Feng -
2021 Poster: SSMF: Shifting Seasonal Matrix Factorization »
Koki Kawabata · Siddharth Bhatia · Rui Liu · Mohit Wadhwa · Bryan Hooi -
2021 Poster: EIGNN: Efficient Infinite-Depth Graph Neural Networks »
Juncheng Liu · Kenji Kawaguchi · Bryan Hooi · Yiwei Wang · Xiaokui Xiao -
2019 Poster: Efficient Pure Exploration in Adaptive Round Model »
Tianyuan Jin · Jieming SHI · Xiaokui Xiao · Enhong Chen