Timezone: »
Poster
Coresets for Wasserstein Distributionally Robust Optimization Problems
Ruomin Huang · Jiawei Huang · Wenjie Liu · Hu Ding
Wasserstein distributionally robust optimization (\textsf{WDRO}) is a popular model to enhance the robustness of machine learning with ambiguous data. However, the complexity of \textsf{WDRO} can be prohibitive in practice since solving its ``minimax'' formulation requires a great amount of computation. Recently, several fast \textsf{WDRO} training algorithms for some specific machine learning tasks (e.g., logistic regression) have been developed. However, the research on designing efficient algorithms for general large-scale \textsf{WDRO}s is still quite limited, to the best of our knowledge. \textit{Coreset} is an important tool for compressing large dataset, and thus it has been widely applied to reduce the computational complexities for many optimization problems. In this paper, we introduce a unified framework to construct the $\epsilon$-coreset for the general \textsf{WDRO} problems. Though it is challenging to obtain a conventional coreset for \textsf{WDRO} due to the uncertainty issue of ambiguous data, we show that we can compute a ``dual coreset'' by using the strong duality property of \textsf{WDRO}. Also, the error introduced by the dual coreset can be theoretically guaranteed for the original \textsf{WDRO} objective. To construct the dual coreset, we propose a novel grid sampling approach that is particularly suitable for the dual formulation of \textsf{WDRO}. Finally, we implement our coreset approach and illustrate its effectiveness for several \textsf{WDRO} problems in the experiments. See \href{https://arxiv.org/abs/2210.04260}{arXiv:2210.04260} for the full version of this paper. The code is available at \url{https://github.com/h305142/WDRO_coreset}.
Author Information
Ruomin Huang (University of Science and Technology of China)
Jiawei Huang (university of science and technology of china)
Wenjie Liu (University of Science and Technology of China)
Hu Ding (University of Science and Technology of China)
More from the Same Authors
-
2021 Spotlight: Robust and Fully-Dynamic Coreset for Continuous-and-Bounded Learning (With Outliers) Problems »
Zixiu Wang · Yiwen Guo · Hu Ding -
2022 Spotlight: Coresets for Wasserstein Distributionally Robust Optimization Problems »
Ruomin Huang · Jiawei Huang · Wenjie Liu · Hu Ding -
2022 Spotlight: Lightning Talks 4A-1 »
Jiawei Huang · Su Jia · Abdurakhmon Sadiev · Ruomin Huang · Yuanyu Wan · Denizalp Goktas · Jiechao Guan · Andrew Li · Wei-Wei Tu · Li Zhao · Amy Greenwald · Jiawei Huang · Dmitry Kovalev · Yong Liu · Wenjie Liu · Peter Richtarik · Lijun Zhang · Zhiwu Lu · R Ravi · Tao Qin · Wei Chen · Hu Ding · Nan Jiang · Tie-Yan Liu -
2022 Spotlight: Lightning Talks 1B-4 »
Andrei Atanov · Shiqi Yang · Wanshan Li · Yongchang Hao · Ziquan Liu · Jiaxin Shi · Anton Plaksin · Jiaxiang Chen · Ziqi Pan · yaxing wang · Yuxin Liu · Stepan Martyanov · Alessandro Rinaldo · Yuhao Zhou · Li Niu · Qingyuan Yang · Andrei Filatov · Yi Xu · Liqing Zhang · Lili Mou · Ruomin Huang · Teresa Yeo · kai wang · Daren Wang · Jessica Hwang · Yuanhong Xu · Qi Qian · Hu Ding · Michalis Titsias · Shangling Jui · Ajay Sohmshetty · Lester Mackey · Joost van de Weijer · Hao Li · Amir Zamir · Xiangyang Ji · Antoni Chan · Rong Jin -
2022 Spotlight: Coresets for Relational Data and The Applications »
Jiaxiang Chen · Qingyuan Yang · Ruomin Huang · Hu Ding -
2022 Poster: Coresets for Relational Data and The Applications »
Jiaxiang Chen · Qingyuan Yang · Ruomin Huang · Hu Ding -
2021 Poster: Solving Soft Clustering Ensemble via $k$-Sparse Discrete Wasserstein Barycenter »
Ruizhe Qin · Mengying Li · Hu Ding -
2021 Poster: Robust and Fully-Dynamic Coreset for Continuous-and-Bounded Learning (With Outliers) Problems »
Zixiu Wang · Yiwen Guo · Hu Ding