Timezone: »
We propose a novel reduction-to-binary (R2B) approach that enforces demographic parity for multiclass classification with non-binary sensitive attributes via a reduction to a sequence of binary debiasing tasks. We prove that R2B satisfies optimality and bias guarantees and demonstrate empirically that it can lead to an improvement over two baselines: (1) treating multiclass problems as multi-label by debiasing labels independently and (2) transforming the features instead of the labels. Surprisingly, we also demonstrate that independent label debiasing yields competitive results in most (but not all) settings. We validate these conclusions on synthetic and real-world datasets from social science, computer vision, and healthcare.
Author Information
Ibrahim Alabdulmohsin (Google)
Jessica Schrouff (DeepMind)

I am a Senior Research Scientist at DeepMind since 2022. I joined Alphabet in 2019 as part of Google Research working on trustworthy machine learning for healthcare. Before that, I was a postdoctoral researcher at University College London and Stanford University studying machine learning for neuroscience. My current interests lie at the intersection of trustworthy machine learning and causality.
Sanmi Koyejo (Stanford, Google Research)

Sanmi Koyejo is an Assistant Professor in the Department of Computer Science at the University of Illinois at Urbana-Champaign and a research scientist at Google AI in Accra. Koyejo's research interests are in developing the principles and practice of adaptive and robust machine learning. Additionally, Koyejo focuses on applications to biomedical imaging and neuroscience. Koyejo co-founded the Black in AI organization and currently serves on its board.
More from the Same Authors
-
2021 : Maintaining fairness across distribution shifts: do we have viable solutions for real-world applications? »
Jessica Schrouff · Natalie Harris · Sanmi Koyejo · Ibrahim Alabdulmohsin · Eva Schnider · Diana Mincu · Christina Chen · Awa Dieng · Yuan Liu · Vivek Natarajan · Katherine Heller · Alexander D'Amour -
2021 : Probabilistic Performance Metric Elicitation »
Zachary Robertson · Hantao Zhang · Sanmi Koyejo -
2021 : Robust and Personalized Federated Learning with Spurious Features: an Adversarial Approach »
Xiaoyang Wang · Han Zhao · Klara Nahrstedt · Sanmi Koyejo -
2021 : RVFR: Robust Vertical Federated Learning via Feature Subspace Recovery »
Jing Liu · Chulin Xie · Krishnaram Kenthapadi · Sanmi Koyejo · Bo Li -
2021 : Secure Byzantine-Robust Distributed Learning via Clustering »
Raj Kiriti Velicheti · Sanmi Koyejo -
2021 : Exploiting Causal Chains for Domain Generalization »
Olawale Salaudeen · Sanmi Koyejo -
2021 : Distribution Preserving Bayesian Coresets using Set Constraints »
Shovik Guha · Rajiv Khanna · Sanmi Koyejo -
2022 : Metric Elicitation; Moving from Theory to Practice »
Safinah Ali · Sohini Upadhyay · Gaurush Hiranandani · Elena Glassman · Sanmi Koyejo -
2022 : The Curse of Low Task Diversity: On the Failure of Transfer Learning to Outperform MAML and Their Empirical Equivalence »
Brando Miranda · Patrick Yu · Yu-Xiong Wang · Sanmi Koyejo -
2022 : Batch Active Learning from the Perspective of Sparse Approximation »
Maohao Shen · Yibo Jacky Zhang · Bowen Jiang · Sanmi Koyejo -
2022 Spotlight: Lightning Talks 1A-4 »
Siwei Wang · Jing Liu · Nianqiao Ju · Shiqian Li · Eloïse Berthier · Muhammad Faaiz Taufiq · Arsene Fansi Tchango · Chen Liang · Chulin Xie · Jordan Awan · Jean-Francois Ton · Ziad Kobeissi · Wenguan Wang · Xinwang Liu · Kewen Wu · Rishab Goel · Jiaxu Miao · Suyuan Liu · Julien Martel · Ruobin Gong · Francis Bach · Chi Zhang · Rob Cornish · Sanmi Koyejo · Zhi Wen · Yee Whye Teh · Yi Yang · Jiaqi Jin · Bo Li · Yixin Zhu · Vinayak Rao · Wenxuan Tu · Gaetan Marceau Caron · Arnaud Doucet · Xinzhong Zhu · Joumana Ghosn · En Zhu -
2022 Spotlight: CoPur: Certifiably Robust Collaborative Inference via Feature Purification »
Jing Liu · Chulin Xie · Sanmi Koyejo · Bo Li -
2022 Workshop: Algorithmic Fairness through the Lens of Causality and Privacy »
Awa Dieng · Miriam Rateike · Golnoosh Farnadi · Ferdinando Fioretto · Matt Kusner · Jessica Schrouff -
2022 Poster: Diagnosing failures of fairness transfer across distribution shift in real-world medical settings »
Jessica Schrouff · Natalie Harris · Sanmi Koyejo · Ibrahim Alabdulmohsin · Eva Schnider · Krista Opsahl-Ong · Alexander Brown · Subhrajit Roy · Diana Mincu · Christina Chen · Awa Dieng · Yuan Liu · Vivek Natarajan · Alan Karthikesalingam · Katherine Heller · Silvia Chiappa · Alexander D'Amour -
2022 Poster: CoPur: Certifiably Robust Collaborative Inference via Feature Purification »
Jing Liu · Chulin Xie · Sanmi Koyejo · Bo Li -
2022 Poster: Fair Wrapping for Black-box Predictions »
Alexander Soen · Ibrahim Alabdulmohsin · Sanmi Koyejo · Yishay Mansour · Nyalleng Moorosi · Richard Nock · Ke Sun · Lexing Xie -
2022 Poster: Revisiting Neural Scaling Laws in Language and Vision »
Ibrahim Alabdulmohsin · Behnam Neyshabur · Xiaohua Zhai -
2022 Poster: A Nonconvex Framework for Structured Dynamic Covariance Recovery »
Katherine Tsai · Mladen Kolar · Sanmi Koyejo -
2021 Workshop: Algorithmic Fairness through the lens of Causality and Robustness »
Jessica Schrouff · Awa Dieng · Golnoosh Farnadi · Mark Kwegyir-Aggrey · Miriam Rateike -
2020 : AFCI2020: Closing remarks and Summary of Discussions »
Jessica Schrouff -
2020 Workshop: Algorithmic Fairness through the Lens of Causality and Interpretability »
Awa Dieng · Jessica Schrouff · Matt Kusner · Golnoosh Farnadi · Fernando Diaz -
2020 : Responsible AI for healthcare at Google »
Jessica Schrouff -
2019 Tutorial: Representation Learning and Fairness »
Moustapha Cisse · Sanmi Koyejo