Timezone: »
Similarity learning can be significantly advanced by informative relationships among different samples and features. The current methods try to excavate the multiple correlations in different aspects, but cannot integrate them into a unified framework. In this paper, we provide to consider the multiple correlations from a unified perspective and propose a new method called MetricFormer, which can effectively capture and model the multiple correlations with an elaborate metric transformer. In MetricFormer, the feature decoupling block is adopted to learn an ensemble of distinct and diverse features with different discriminative characteristics. After that, we apply the batch-wise correlation block into the batch dimension of each mini-batch to implicitly explore sample relationships. Finally, the feature-wise correlation block is performed to discover the intrinsic structural pattern of the ensemble of features and obtain the aggregated feature embedding for similarity measuring. With three kinds of transformer blocks, we can learn more representative features through the proposed MetricFormer. Moreover, our proposed method can be flexibly integrated with any metric learning framework. Extensive experiments on three widely-used datasets demonstrate the superiority of our proposed method over state-of-the-art methods.
Author Information
Jiexi Yan (Xidian University)
Erkun Yang (Xidian University)
Cheng Deng (Xidian University)
Heng Huang (University of Pittsburgh)
More from the Same Authors
-
2022 Poster: RSA: Reducing Semantic Shift from Aggressive Augmentations for Self-supervised Learning »
Yingbin Bai · Erkun Yang · Zhaoqing Wang · Yuxuan Du · Bo Han · Cheng Deng · Dadong Wang · Tongliang Liu -
2022 : FedGRec: Federated Graph Recommender System with Lazy Update of Latent Embeddings »
Junyi Li · Heng Huang -
2022 : Cooperation or Competition: Avoiding Player Domination for Multi-target Robustness by Adaptive Budgets »
Yimu Wang · Dinghuai Zhang · Yihan Wu · Heng Huang · Hongyang Zhang -
2022 Spotlight: RSA: Reducing Semantic Shift from Aggressive Augmentations for Self-supervised Learning »
Yingbin Bai · Erkun Yang · Zhaoqing Wang · Yuxuan Du · Bo Han · Cheng Deng · Dadong Wang · Tongliang Liu -
2022 Poster: Enhanced Bilevel Optimization via Bregman Distance »
Feihu Huang · Junyi Li · Shangqian Gao · Heng Huang -
2021 Poster: Optimal Underdamped Langevin MCMC Method »
Zhengmian Hu · Feihu Huang · Heng Huang -
2021 Poster: Fast Training Method for Stochastic Compositional Optimization Problems »
Hongchang Gao · Heng Huang -
2021 Poster: SUPER-ADAM: Faster and Universal Framework of Adaptive Gradients »
Feihu Huang · Junyi Li · Heng Huang -
2021 Poster: Understanding and Improving Early Stopping for Learning with Noisy Labels »
Yingbin Bai · Erkun Yang · Bo Han · Yanhua Yang · Jiatong Li · Yinian Mao · Gang Niu · Tongliang Liu -
2021 Poster: Efficient Mirror Descent Ascent Methods for Nonsmooth Minimax Problems »
Feihu Huang · Xidong Wu · Heng Huang -
2021 Poster: A Faster Decentralized Algorithm for Nonconvex Minimax Problems »
Wenhan Xian · Feihu Huang · Yanfu Zhang · Heng Huang -
2020 Poster: Fewer is More: A Deep Graph Metric Learning Perspective Using Fewer Proxies »
Yuehua Zhu · Muli Yang · Cheng Deng · Wei Liu -
2020 Spotlight: Fewer is More: A Deep Graph Metric Learning Perspective Using Fewer Proxies »
Yuehua Zhu · Muli Yang · Cheng Deng · Wei Liu -
2020 Poster: Adversarial Learning for Robust Deep Clustering »
Xu Yang · Cheng Deng · Kun Wei · Junchi Yan · Wei Liu -
2019 Poster: Curvilinear Distance Metric Learning »
Shuo Chen · Lei Luo · Jian Yang · Chen Gong · Jun Li · Heng Huang -
2019 Poster: Cross-Modal Learning with Adversarial Samples »
CHAO LI · Shangqian Gao · Cheng Deng · De Xie · Wei Liu -
2018 Poster: Bilevel Distance Metric Learning for Robust Image Recognition »
Jie Xu · Lei Luo · Cheng Deng · Heng Huang -
2018 Poster: Training Neural Networks Using Features Replay »
Zhouyuan Huo · Bin Gu · Heng Huang -
2018 Spotlight: Training Neural Networks Using Features Replay »
Zhouyuan Huo · Bin Gu · Heng Huang -
2017 Poster: Group Sparse Additive Machine »
Hong Chen · Xiaoqian Wang · Cheng Deng · Heng Huang -
2017 Poster: Regularized Modal Regression with Applications in Cognitive Impairment Prediction »
Xiaoqian Wang · Hong Chen · Weidong Cai · Dinggang Shen · Heng Huang -
2017 Poster: Learning A Structured Optimal Bipartite Graph for Co-Clustering »
Feiping Nie · Xiaoqian Wang · Cheng Deng · Heng Huang