Timezone: »
Domain adaptation framework of GANs has achieved great progress in recent years as a main successful approach of training contemporary GANs in the case of very limited training data. In this work, we significantly improve this framework by proposing an extremely compact parameter space for fine-tuning the generator. We introduce a novel domain-modulation technique that allows to optimize only 6 thousand-dimensional vector instead of 30 million weights of StyleGAN2 to adapt to a target domain. We apply this parameterization to the state-of-art domain adaptation methods and show that it has almost the same expressiveness as the full parameter space. Additionally, we propose a new regularization loss that considerably enhances the diversity of the fine-tuned generator. Inspired by the reduction in the size of the optimizing parameter space we consider the problem of multi-domain adaptation of GANs, i.e. setting when the same model can adapt to several domains depending on the input query. We propose the HyperDomainNet that is a hypernetwork that predicts our parameterization given the target domain. We empirically confirm that it can successfully learn a number of domains at once and may even generalize to unseen domains. Source code can be found at https://github.com/MACderRu/HyperDomainNet
Author Information
Aibek Alanov (Artificial Intelligence Research Institute)
Vadim Titov (Moscow Institute of Physics and Technology)
Dmitry Vetrov (Higher School of Economics, AI Research Institute)
More from the Same Authors
-
2022 Spotlight: Lightning Talks 3B-2 »
Yu Huang · Tero Karras · Maxim Kodryan · Shiau Hong Lim · Shudong Huang · Ziyu Wang · Siqiao Xue · ILYAS MALIK · Ekaterina Lobacheva · Miika Aittala · Hongjie Wu · Yuhao Zhou · Yingbin Liang · Xiaoming Shi · Jun Zhu · Maksim Nakhodnov · Timo Aila · Yazhou Ren · James Zhang · Longbo Huang · Dmitry Vetrov · Ivor Tsang · Hongyuan Mei · Samuli Laine · Zenglin Xu · Wentao Feng · Jiancheng Lv -
2022 Spotlight: HyperDomainNet: Universal Domain Adaptation for Generative Adversarial Networks »
Aibek Alanov · Vadim Titov · Dmitry Vetrov -
2022 Spotlight: Training Scale-Invariant Neural Networks on the Sphere Can Happen in Three Regimes »
Maxim Kodryan · Ekaterina Lobacheva · Maksim Nakhodnov · Dmitry Vetrov -
2022 Spotlight: Lightning Talks 3B-1 »
Tianying Ji · Tongda Xu · Giulia Denevi · Aibek Alanov · Martin Wistuba · Wei Zhang · Yuesong Shen · Massimiliano Pontil · Vadim Titov · Yan Wang · Yu Luo · Daniel Cremers · Yanjun Han · Arlind Kadra · Dailan He · Josif Grabocka · Zhengyuan Zhou · Fuchun Sun · Carlo Ciliberto · Dmitry Vetrov · Mingxuan Jing · Chenjian Gao · Aaron Flores · Tsachy Weissman · Han Gao · Fengxiang He · Kunzan Liu · Wenbing Huang · Hongwei Qin -
2022 Poster: Training Scale-Invariant Neural Networks on the Sphere Can Happen in Three Regimes »
Maxim Kodryan · Ekaterina Lobacheva · Maksim Nakhodnov · Dmitry Vetrov -
2021 Poster: Leveraging Recursive Gumbel-Max Trick for Approximate Inference in Combinatorial Spaces »
Kirill Struminsky · Artyom Gadetsky · Denis Rakitin · Danil Karpushkin · Dmitry Vetrov -
2021 Poster: On the Periodic Behavior of Neural Network Training with Batch Normalization and Weight Decay »
Ekaterina Lobacheva · Maxim Kodryan · Nadezhda Chirkova · Andrey Malinin · Dmitry Vetrov -
2020 Poster: On Power Laws in Deep Ensembles »
Ekaterina Lobacheva · Nadezhda Chirkova · Maxim Kodryan · Dmitry Vetrov -
2020 Spotlight: On Power Laws in Deep Ensembles »
Ekaterina Lobacheva · Nadezhda Chirkova · Maxim Kodryan · Dmitry Vetrov -
2019 Poster: The Implicit Metropolis-Hastings Algorithm »
Kirill Neklyudov · Evgenii Egorov · Dmitry Vetrov -
2019 Poster: Importance Weighted Hierarchical Variational Inference »
Artem Sobolev · Dmitry Vetrov -
2019 Poster: A Prior of a Googol Gaussians: a Tensor Ring Induced Prior for Generative Models »
Maxim Kuznetsov · Daniil Polykovskiy · Dmitry Vetrov · Alex Zhebrak -
2019 Poster: A Simple Baseline for Bayesian Uncertainty in Deep Learning »
Wesley Maddox · Pavel Izmailov · Timur Garipov · Dmitry Vetrov · Andrew Gordon Wilson -
2018 : TBC 2 »
Dmitry Vetrov -
2018 Poster: Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs »
Timur Garipov · Pavel Izmailov · Dmitrii Podoprikhin · Dmitry Vetrov · Andrew Wilson -
2018 Spotlight: Loss Surfaces, Mode Connectivity, and Fast Ensembling of DNNs »
Timur Garipov · Pavel Izmailov · Dmitrii Podoprikhin · Dmitry Vetrov · Andrew Wilson -
2017 Poster: Structured Bayesian Pruning via Log-Normal Multiplicative Noise »
Kirill Neklyudov · Dmitry Molchanov · Arsenii Ashukha · Dmitry Vetrov -
2016 Poster: PerforatedCNNs: Acceleration through Elimination of Redundant Convolutions »
Mikhail Figurnov · Aizhan Ibraimova · Dmitry Vetrov · Pushmeet Kohli -
2015 Poster: M-Best-Diverse Labelings for Submodular Energies and Beyond »
Alexander Kirillov · Dmytro Shlezinger · Dmitry Vetrov · Carsten Rother · Bogdan Savchynskyy -
2015 Poster: Tensorizing Neural Networks »
Alexander Novikov · Dmitrii Podoprikhin · Anton Osokin · Dmitry Vetrov