Timezone: »
Established methods for unsupervised representation learning such as variational autoencoders produce none or poorly calibrated uncertainty estimates making it difficult to evaluate if learned representations are stable and reliable. In this work, we present a Bayesian autoencoder for unsupervised representation learning, which is trained using a novel variational lower-bound of the autoencoder evidence. This is maximized using Monte Carlo EM with a variational distribution that takes the shape of a Laplace approximation. We develop a new Hessian approximation that scales linearly with data size allowing us to model high-dimensional data. Empirically, we show that our Laplacian autoencoder estimates well-calibrated uncertainties in both latent and output space. We demonstrate that this results in improved performance across a multitude of downstream tasks.
Author Information
Marco Miani (Technical University of Denmark)
Frederik Warburg (Technical University of Denmark)
Pablo Moreno-Muñoz (Technical University of Denmark (DTU))
Nicki Skafte (Technical University of Denmark)
Søren Hauberg (Technical University of Denmark)
More from the Same Authors
-
2021 : A kernel for continuously relaxed, discrete Bayesian optimization of protein sequences »
Yevgen Zainchkovskyy · Simon Bartels · Søren Hauberg · Jes Frellsen · Wouter Boomsma -
2021 Meetup: Copenhagen, Denmark »
Søren Hauberg -
2022 : Probabilistic thermal stability prediction through sparsity promoting transformer representation »
Yevgen Zainchkovskyy · Jesper Ferkinghoff-Borg · Anja Bennett · Thomas Egebjerg · Nikolai Lorenzen · Per Greisen · Søren Hauberg · Carsten Stahlhut -
2022 : Optimal Latent Transport »
Hrittik Roy · Søren Hauberg -
2022 : Identifying latent distances with Finslerian geometry »
Alison Pouplin · David Eklund · Carl Henrik Ek · Søren Hauberg -
2023 : Beyond Parameter Averaging in Model Aggregation »
Pol G. Recasens · Jordi Torres · Josep Lluís Berral · Søren Hauberg · Pablo Moreno-Muñoz -
2023 Poster: Learning to Taste: A Multimodal Wine Dataset »
Thoranna Bender · Simon Sørensen · Alireza Kashani · Kristjan Hjorleifsson · Grethe Hyldig · Søren Hauberg · Serge Belongie · Frederik Warburg -
2023 Poster: On Masked Pre-training and the Marginal Likelihood »
Pablo Moreno-Muñoz · Pol G. Recasens · Søren Hauberg -
2023 Poster: Riemannian Laplace approximations for Bayesian neural networks »
Federico Bergamin · Pablo Moreno-Muñoz · Søren Hauberg · Georgios Arvanitidis -
2023 Poster: Bayesian Metric Learning for Uncertainty Quantification in Image Retrieval »
Frederik Warburg · Marco Miani · Silas Brack · Søren Hauberg -
2022 Poster: Revisiting Active Sets for Gaussian Process Decoders »
Pablo Moreno-Muñoz · Cilie Feldager · Søren Hauberg -
2021 Poster: Bounds all around: training energy-based models with bidirectional bounds »
Cong Geng · Jia Wang · Zhiyong Gao · Jes Frellsen · Søren Hauberg -
2020 : Isometric Gaussian Process Latent Variable Model »
Martin Jørgensen · Søren Hauberg -
2020 : Invited Talk 3: Reparametrization invariance in representation learning »
Søren Hauberg -
2019 Poster: Diffeomorphic Temporal Alignment Nets »
Ron A Shapira Weber · Matan Eyal · Nicki Skafte · Oren Shriki · Oren Freifeld -
2019 Poster: Reliable training and estimation of variance networks »
Nicki Skafte · Martin Jørgensen · Søren Hauberg -
2019 Poster: Explicit Disentanglement of Appearance and Perspective in Generative Models »
Nicki Skafte · Søren Hauberg -
2016 Poster: A Locally Adaptive Normal Distribution »
Georgios Arvanitidis · Lars K Hansen · Søren Hauberg