Timezone: »
Recently Loizou et al. (2021), proposed and analyzed stochastic gradient descent (SGD) with stochastic Polyak stepsize (SPS). The proposed SPS comes with strong convergence guarantees and competitive performance; however, it has two main drawbacks when it is used in non-over-parameterized regimes: (i) It requires a priori knowledge of the optimal mini-batch losses, which are not available when the interpolation condition is not satisfied (e.g., regularized objectives), and (ii) it guarantees convergence only to a neighborhood of the solution. In this work, we study the dynamics and the convergence properties of SGD equipped with new variants of the stochastic Polyak stepsize and provide solutions to both drawbacks of the original SPS. We first show that a simple modification of the original SPS that uses lower bounds instead of the optimal function values can directly solve issue (i). On the other hand, solving issue (ii) turns out to be more challenging and leads us to valuable insights into the method's behavior. We show that if interpolation is not satisfied, the correlation between SPS and stochastic gradients introduces a bias, which effectively distorts the expectation of the gradient signal near minimizers, leading to non-convergence - even if the stepsize is scaled down during training. To fix this issue, we propose DecSPS, a novel modification of SPS, which guarantees convergence to the exact minimizer - without a priori knowledge of the problem parameters. For strongly-convex optimization problems, DecSPS is the first stochastic adaptive optimization method that converges to the exact solution without restrictive assumptions like bounded iterates/gradients.
Author Information
Antonio Orvieto (ETH Zurich)
PhD Student at ETH Zurich. I’m interested in the design and analysis of optimization algorithms for deep learning. Interned at DeepMind, MILA, and Meta. All publications at http://orvi.altervista.org/ Looking for postdoc positions! :) antonio.orvieto@inf.ethz.ch
Simon Lacoste-Julien (Mila, Université de Montréal & SAIL Montreal)
Simon Lacoste-Julien is an associate professor at Mila and DIRO from Université de Montréal, and Canada CIFAR AI Chair holder. He also heads part time the SAIT AI Lab Montreal from Samsung. His research interests are machine learning and applied math, with applications in related fields like computer vision and natural language processing. He obtained a B.Sc. in math., physics and computer science from McGill, a PhD in computer science from UC Berkeley and a post-doc from the University of Cambridge. He spent a few years as a research faculty at INRIA and École normale supérieure in Paris before coming back to his roots in Montreal in 2016 to answer the call from Yoshua Bengio in growing the Montreal AI ecosystem.
Nicolas Loizou (Johns Hopkins University)
More from the Same Authors
-
2022 : Batch size selection by stochastic optimal contro »
Jim Zhao · Aurelien Lucchi · Frank Proske · Antonio Orvieto · Hans Kersting -
2022 : ProxSkip for Stochastic Variational Inequalities: A Federated Learning Algorithm for Provable Communication Acceleration »
Siqi Zhang · Nicolas Loizou -
2022 : Stochastic Gradient Descent-Ascent: Unified Theory and New Efficient Methods »
Aleksandr Beznosikov · Eduard Gorbunov · Hugo Berard · Nicolas Loizou -
2022 : Unlocking Slot Attention by Changing Optimal Transport Costs »
Yan Zhang · David Zhang · Simon Lacoste-Julien · Gertjan Burghouts · Cees Snoek -
2022 : Achieving a Better Stability-Plasticity Trade-off via Auxiliary Networks in Continual Learning »
Sanghwan Kim · Lorenzo Noci · Antonio Orvieto · Thomas Hofmann -
2022 : A Unified Approach to Reinforcement Learning, Quantal Response Equilibria, and Two-Player Zero-Sum Games »
Samuel Sokota · Ryan D'Orazio · J. Zico Kolter · Nicolas Loizou · Marc Lanctot · Ioannis Mitliagkas · Noam Brown · Christian Kroer -
2022 : Unlocking Slot Attention by Changing Optimal Transport Costs »
Yan Zhang · David Zhang · Simon Lacoste-Julien · Gertjan Burghouts · Cees Snoek -
2022 : Unlocking Slot Attention by Changing Optimal Transport Costs »
Yan Zhang · David Zhang · Simon Lacoste-Julien · Gertjan Burghouts · Cees Snoek -
2022 : Poster Session 1 »
Andrew Lowy · Thomas Bonnier · Yiling Xie · Guy Kornowski · Simon Schug · Seungyub Han · Nicolas Loizou · xinwei zhang · Laurent Condat · Tabea E. Röber · Si Yi Meng · Marco Mondelli · Runlong Zhou · Eshaan Nichani · Adrian Goldwaser · Rudrajit Das · Kayhan Behdin · Atish Agarwala · Mukul Gagrani · Gary Cheng · Tian Li · Haoran Sun · Hossein Taheri · Allen Liu · Siqi Zhang · Dmitrii Avdiukhin · Bradley Brown · Miaolan Xie · Junhyung Lyle Kim · Sharan Vaswani · Xinmeng Huang · Ganesh Ramachandra Kini · Angela Yuan · Weiqiang Zheng · Jiajin Li -
2022 Poster: Controlled Sparsity via Constrained Optimization or: How I Learned to Stop Tuning Penalties and Love Constraints »
Jose Gallego-Posada · Juan Ramirez · Akram Erraqabi · Yoshua Bengio · Simon Lacoste-Julien -
2022 Poster: Data-Efficient Structured Pruning via Submodular Optimization »
Marwa El Halabi · Suraj Srinivas · Simon Lacoste-Julien -
2022 Poster: On the Theoretical Properties of Noise Correlation in Stochastic Optimization »
Aurelien Lucchi · Frank Proske · Antonio Orvieto · Francis Bach · Hans Kersting -
2022 Poster: Signal Propagation in Transformers: Theoretical Perspectives and the Role of Rank Collapse »
Lorenzo Noci · Sotiris Anagnostidis · Luca Biggio · Antonio Orvieto · Sidak Pal Singh · Aurelien Lucchi -
2021 : Empirics on the expressiveness of Randomized Signature »
Enea Monzio Compagnoni · Luca Biggio · Antonio Orvieto -
2021 Poster: Stochastic Gradient Descent-Ascent and Consensus Optimization for Smooth Games: Convergence Analysis under Expected Co-coercivity »
Nicolas Loizou · Hugo Berard · Gauthier Gidel · Ioannis Mitliagkas · Simon Lacoste-Julien -
2021 Poster: Rethinking the Variational Interpretation of Accelerated Optimization Methods »
Peiyuan Zhang · Antonio Orvieto · Hadi Daneshmand -
2021 Poster: On the Second-order Convergence Properties of Random Search Methods »
Aurelien Lucchi · Antonio Orvieto · Adamos Solomou -
2020 Poster: Adversarial Example Games »
Joey Bose · Gauthier Gidel · Hugo Berard · Andre Cianflone · Pascal Vincent · Simon Lacoste-Julien · Will Hamilton -
2020 Poster: Differentiable Causal Discovery from Interventional Data »
Philippe Brouillard · Sébastien Lachapelle · Alexandre Lacoste · Simon Lacoste-Julien · Alexandre Drouin -
2020 Spotlight: Differentiable Causal Discovery from Interventional Data »
Philippe Brouillard · Sébastien Lachapelle · Alexandre Lacoste · Simon Lacoste-Julien · Alexandre Drouin -
2019 Workshop: Bridging Game Theory and Deep Learning »
Ioannis Mitliagkas · Gauthier Gidel · Niao He · Reyhane Askari Hemmat · N H · Nika Haghtalab · Simon Lacoste-Julien -
2019 : Poster Session »
Gergely Flamich · Shashanka Ubaru · Charles Zheng · Josip Djolonga · Kristoffer Wickstrøm · Diego Granziol · Konstantinos Pitas · Jun Li · Robert Williamson · Sangwoong Yoon · Kwot Sin Lee · Julian Zilly · Linda Petrini · Ian Fischer · Zhe Dong · Alexander Alemi · Bao-Ngoc Nguyen · Rob Brekelmans · Tailin Wu · Aditya Mahajan · Alexander Li · Kirankumar Shiragur · Yair Carmon · Linara Adilova · SHIYU LIU · Bang An · Sanjeeb Dash · Oktay Gunluk · Arya Mazumdar · Mehul Motani · Julia Rosenzweig · Michael Kamp · Marton Havasi · Leighton P Barnes · Zhengqing Zhou · Yi Hao · Dylan Foster · Yuval Benjamini · Nati Srebro · Michael Tschannen · Paul Rubenstein · Sylvain Gelly · John Duchi · Aaron Sidford · Robin Ru · Stefan Zohren · Murtaza Dalal · Michael A Osborne · Stephen J Roberts · Moses Charikar · Jayakumar Subramanian · Xiaodi Fan · Max Schwarzer · Nicholas Roberts · Simon Lacoste-Julien · Vinay Prabhu · Aram Galstyan · Greg Ver Steeg · Lalitha Sankar · Yung-Kyun Noh · Gautam Dasarathy · Frank Park · Ngai-Man (Man) Cheung · Ngoc-Trung Tran · Linxiao Yang · Ben Poole · Andrea Censi · Tristan Sylvain · R Devon Hjelm · Bangjie Liu · Jose Gallego-Posada · Tyler Sypherd · Kai Yang · Jan Nikolas Morshuis -
2019 : Poster Session »
Jonathan Scarlett · Piotr Indyk · Ali Vakilian · Adrian Weller · Partha P Mitra · Benjamin Aubin · Bruno Loureiro · Florent Krzakala · Lenka Zdeborová · Kristina Monakhova · Joshua Yurtsever · Laura Waller · Hendrik Sommerhoff · Michael Moeller · Rushil Anirudh · Shuang Qiu · Xiaohan Wei · Zhuoran Yang · Jayaraman Thiagarajan · Salman Asif · Michael Gillhofer · Johannes Brandstetter · Sepp Hochreiter · Felix Petersen · Dhruv Patel · Assad Oberai · Akshay Kamath · Sushrut Karmalkar · Eric Price · Ali Ahmed · Zahra Kadkhodaie · Sreyas Mohan · Eero Simoncelli · Carlos Fernandez-Granda · Oscar Leong · Wesam Sakla · Rebecca Willett · Stephan Hoyer · Jascha Sohl-Dickstein · Sam Greydanus · Gauri Jagatap · Chinmay Hegde · Michael Kellman · Jonathan Tamir · Nouamane Laanait · Ousmane Dia · Mirco Ravanelli · Jonathan Binas · Negar Rostamzadeh · Shirin Jalali · Tiantian Fang · Alex Schwing · Sébastien Lachapelle · Philippe Brouillard · Tristan Deleu · Simon Lacoste-Julien · Stella Yu · Arya Mazumdar · Ankit Singh Rawat · Yue Zhao · Jianshu Chen · Xiaoyang Li · Hubert Ramsauer · Gabrio Rizzuti · Nikolaos Mitsakos · Dingzhou Cao · Thomas Strohmer · Yang Li · Pei Peng · Gregory Ongie -
2019 Poster: Shadowing Properties of Optimization Algorithms »
Antonio Orvieto · Aurelien Lucchi -
2019 Poster: Reducing Noise in GAN Training with Variance Reduced Extragradient »
Tatjana Chavdarova · Gauthier Gidel · François Fleuret · Simon Lacoste-Julien -
2019 Poster: Continuous-time Models for Stochastic Optimization Algorithms »
Antonio Orvieto · Aurelien Lucchi -
2019 Poster: Implicit Regularization of Discrete Gradient Dynamics in Linear Neural Networks »
Gauthier Gidel · Francis Bach · Simon Lacoste-Julien -
2019 Poster: Painless Stochastic Gradient: Interpolation, Line-Search, and Convergence Rates »
Sharan Vaswani · Aaron Mishkin · Issam Laradji · Mark Schmidt · Gauthier Gidel · Simon Lacoste-Julien -
2018 : Opening remarks »
Simon Lacoste-Julien · Gauthier Gidel -
2018 Workshop: Smooth Games Optimization and Machine Learning »
Simon Lacoste-Julien · Ioannis Mitliagkas · Gauthier Gidel · Vasilis Syrgkanis · Eva Tardos · Leon Bottou · Sebastian Nowozin -
2018 Poster: Quantifying Learning Guarantees for Convex but Inconsistent Surrogates »
Kirill Struminsky · Simon Lacoste-Julien · Anton Osokin -
2017 : A3T: Adversarially Augmented Adversarial Training »
Aristide Baratin · Simon Lacoste-Julien · Yoshua Bengio · Akram Erraqabi -
2017 : On Structured Prediction Theory with Calibrated Convex Surrogate Losses. »
Simon Lacoste-Julien -
2017 Poster: Breaking the Nonsmooth Barrier: A Scalable Parallel Method for Composite Optimization »
Fabian Pedregosa · Rémi Leblond · Simon Lacoste-Julien -
2017 Poster: On Structured Prediction Theory with Calibrated Convex Surrogate Losses »
Anton Osokin · Francis Bach · Simon Lacoste-Julien -
2017 Spotlight: Breaking the Nonsmooth Barrier: A Scalable Parallel Method for Composite Optimization »
Fabian Pedregosa · Rémi Leblond · Simon Lacoste-Julien -
2017 Oral: On Structured Prediction Theory with Calibrated Convex Surrogate Losses »
Anton Osokin · Francis Bach · Simon Lacoste-Julien -
2016 Poster: PAC-Bayesian Theory Meets Bayesian Inference »
Pascal Germain · Francis Bach · Alexandre Lacoste · Simon Lacoste-Julien -
2015 Poster: On the Global Linear Convergence of Frank-Wolfe Optimization Variants »
Simon Lacoste-Julien · Martin Jaggi -
2015 Poster: Barrier Frank-Wolfe for Marginal Inference »
Rahul G Krishnan · Simon Lacoste-Julien · David Sontag -
2015 Poster: Variance Reduced Stochastic Gradient Descent with Neighbors »
Thomas Hofmann · Aurelien Lucchi · Simon Lacoste-Julien · Brian McWilliams -
2015 Poster: Rethinking LDA: Moment Matching for Discrete ICA »
Anastasia Podosinnikova · Francis Bach · Simon Lacoste-Julien -
2014 Poster: SAGA: A Fast Incremental Gradient Method With Support for Non-Strongly Convex Composite Objectives »
Aaron Defazio · Francis Bach · Simon Lacoste-Julien -
2009 Workshop: The Generative and Discriminative Learning Interface »
Simon Lacoste-Julien · Percy Liang · Guillaume Bouchard -
2008 Poster: DiscLDA: Discriminative Learning for Dimensionality Reduction and Classification »
Simon Lacoste-Julien · Fei Sha · Michael Jordan