Timezone: »
Probabilistic circuits (PCs) are a tractable representation of probability distributions allowing for exact and efficient computation of likelihoods and marginals. There has been significant recent progress on improving the scale and expressiveness of PCs. However, PC training performance plateaus as model size increases. We discover that most capacity in existing large PC structures is wasted: fully-connected parameter layers are only sparsely used. We propose two operations: pruning and growing, that exploit the sparsity of PC structures. Specifically, the pruning operation removes unimportant sub-networks of the PC for model compression and comes with theoretical guarantees. The growing operation increases model capacity by increasing the dimensions of latent states. By alternatingly applying pruning and growing, we increase the capacity that is meaningfully used, allowing us to significantly scale up PC learning. Empirically, our learner achieves state-of-the-art likelihoods on MNIST-family image datasets and an Penn Tree Bank language data compared to other PC learners and less tractable deep generative models such as flow-based models and variational autoencoders (VAEs).
Author Information
Meihua Dang (University of California, Los Angeles)
Anji Liu (University of California, Los Angeles)
Guy Van den Broeck (UCLA)
I am an Assistant Professor and Samueli Fellow at UCLA, in the Computer Science Department, where I direct the Statistical and Relational Artificial Intelligence (StarAI) lab. My research interests are in Machine Learning (Statistical Relational Learning, Tractable Learning), Knowledge Representation and Reasoning (Graphical Models, Lifted Probabilistic Inference, Knowledge Compilation), Applications of Probabilistic Reasoning and Learning (Probabilistic Programming, Probabilistic Databases), and Artificial Intelligence in general.
More from the Same Authors
-
2021 Spotlight: Tractable Regularization of Probabilistic Circuits »
Anji Liu · Guy Van den Broeck -
2022 Poster: Efficient Meta Reinforcement Learning for Preference-based Fast Adaptation »
Zhizhou Ren · Anji Liu · Yitao Liang · Jian Peng · Jianzhu Ma -
2022 : Pareto-Efficient Decision Agents for Offline Multi-Objective Reinforcement Learning »
Baiting Zhu · Meihua Dang · Aditya Grover -
2022 : Pareto-Efficient Decision Agents for Offline Multi-Objective Reinforcement Learning »
Baiting Zhu · Meihua Dang · Aditya Grover -
2022 : Panel Discussion: "Heading for a Unifying View on nCSI" »
Tobias Gerstenberg · Sriraam Natarajan · - Mausam · Guy Van den Broeck · Devendra Dhami -
2022 : AI can learn from data. But can it learn to reason? »
Guy Van den Broeck -
2022 : Panel »
Guy Van den Broeck · Cassio de Campos · Denis Maua · Kristian Kersting · Rianne van den Berg -
2022 Poster: Semantic Probabilistic Layers for Neuro-Symbolic Learning »
Kareem Ahmed · Stefano Teso · Kai-Wei Chang · Guy Van den Broeck · Antonio Vergari -
2021 Workshop: Advances in Programming Languages and Neurosymbolic Systems (AIPLANS) »
Breandan Considine · Disha Shrivastava · David Yu-Tung Hui · Chin-Wei Huang · Shawn Tan · Xujie Si · Prakash Panangaden · Guy Van den Broeck · Daniel Tarlow -
2021 : AI workloads inside databases »
Guy Van den Broeck · Alexander Ratner · Benjamin Moseley · Konstantinos Karanasos · Parisa Kordjamshidi · Molham Aref · Arun Kumar -
2021 Poster: A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference »
Antonio Vergari · YooJung Choi · Anji Liu · Stefano Teso · Guy Van den Broeck -
2021 : PYLON: A PyTorch Framework for Learning with Constraints »
Kareem Ahmed · Tao Li · Nu Mai Thy Ton · Quan Guo · Kai-Wei Chang · Parisa Kordjamshidi · Vivek Srikumar · Guy Van den Broeck · Sameer Singh -
2021 Oral: A Compositional Atlas of Tractable Circuit Operations for Probabilistic Inference »
Antonio Vergari · YooJung Choi · Anji Liu · Stefano Teso · Guy Van den Broeck -
2021 Poster: Tractable Regularization of Probabilistic Circuits »
Anji Liu · Guy Van den Broeck -
2020 : Contributed talks 6: Group Fairness by Probabilistic Modeling with Latent Fair Decisions »
YooJung Choi · Guy Van den Broeck -
2020 Poster: Probabilistic Inference with Algebraic Constraints: Theoretical Limits and Practical Approximations »
Zhe Zeng · Paolo Morettin · Fanqi Yan · Antonio Vergari · Guy Van den Broeck -
2020 Spotlight: Probabilistic Inference with Algebraic Constraints: Theoretical Limits and Practical Approximations »
Zhe Zeng · Paolo Morettin · Fanqi Yan · Antonio Vergari · Guy Van den Broeck -
2020 Poster: Counterexample-Guided Learning of Monotonic Neural Networks »
Aishwarya Sivaraman · Golnoosh Farnadi · Todd Millstein · Guy Van den Broeck -
2019 : Invited Talk (Guy Van den Broeck) »
Guy Van den Broeck -
2019 Poster: Towards Hardware-Aware Tractable Learning of Probabilistic Models »
Laura Galindez Olascoaga · Wannes Meert · Nimish Shah · Marian Verhelst · Guy Van den Broeck -
2019 Poster: On Tractable Computation of Expected Predictions »
Pasha Khosravi · YooJung Choi · Yitao Liang · Antonio Vergari · Guy Van den Broeck -
2019 Poster: Smoothing Structured Decomposable Circuits »
Andy Shih · Guy Van den Broeck · Paul Beame · Antoine Amarilli -
2019 Spotlight: Smoothing Structured Decomposable Circuits »
Andy Shih · Guy Van den Broeck · Paul Beame · Antoine Amarilli -
2018 Poster: Approximate Knowledge Compilation by Online Collapsed Importance Sampling »
Tal Friedman · Guy Van den Broeck -
2018 Oral: Approximate Knowledge Compilation by Online Collapsed Importance Sampling »
Tal Friedman · Guy Van den Broeck -
2017 Workshop: NIPS Highlights (MLTrain), Learn How to code a paper with state of the art frameworks »
Alex Dimakis · Nikolaos Vasiloglou · Guy Van den Broeck · Alexander Ihler · Assaf Araki -
2016 Poster: New Liftable Classes for First-Order Probabilistic Inference »
Seyed Mehran Kazemi · Angelika Kimmig · Guy Van den Broeck · David Poole -
2015 Poster: Tractable Learning for Complex Probability Queries »
Jessa Bekker · Jesse Davis · Arthur Choi · Adnan Darwiche · Guy Van den Broeck -
2013 Poster: On the Complexity and Approximation of Binary Evidence in Lifted Inference »
Guy Van den Broeck · Adnan Darwiche -
2013 Spotlight: On the Complexity and Approximation of Binary Evidence in Lifted Inference »
Guy Van den Broeck · Adnan Darwiche -
2011 Poster: On the Completeness of First-Order Knowledge Compilation for Lifted Probabilistic Inference »
Guy Van den Broeck -
2011 Oral: On the Completeness of First-Order Knowledge Compilation for Lifted Probabilistic Inference »
Guy Van den Broeck