Timezone: »
Poster
Variance Reduced ProxSkip: Algorithm, Theory and Application to Federated Learning
Grigory Malinovsky · Kai Yi · Peter Richtarik
We study distributed optimization methods based on the {\em local training (LT)} paradigm, i.e., methods which achieve communication efficiency by performing richer local gradient-based training on the clients before (expensive) parameter averaging is allowed to take place. While these methods were first proposed about a decade ago, and form the algorithmic backbone of federated learning, there is an enormous gap between their practical performance, and our theoretical understanding. Looking back at the progress of the field, we {\em identify 5 generations of LT methods}: 1) heuristic, 2) homogeneous, 3) sublinear, 4) linear, and 5) accelerated. The 5${}^{\rm th}$ generation was initiated by the ProxSkip method of Mishchenko et al. (2022), whose analysis provided the first theoretical confirmation that LT is a communication acceleration mechanism. Inspired by this recent progress, we contribute to the 5${}^{\rm th}$ generation of LT methods by showing that it is possible to enhance ProxSkip further using {\em variance reduction}. While all previous theoretical results for LT methods ignore the cost of local work altogether, and are framed purely in terms of the number of communication rounds, we construct a method that can be substantially faster in terms of the {\em total training time} than the state-of-the-art method ProxSkip in theory and practice in the regime when local computation is sufficiently expensive. We characterize this threshold theoretically, and confirm our theoretical predictions with empirical results. Our treatment of variance reduction is generic, and can work with a large number of variance reduction techniques, which may lead to future applications in the future. Finally, we corroborate our theoretical results with carefully engineered proof-of-concept experiments.
Author Information
Grigory Malinovsky (King Abdullah University of Science and Technology)
Kai Yi (KAUST)
I’m a PhD student under the supervision of Prof. Peter Richtárik. Before that, I received my Master from KAUST in Dec. 2021 and B.Eng with honor from Xi’an Jiaotong University in June 2019. I’ve interned at Tencent AI Lab, CMU Xulab, NUS CVML Group, and SenseTime.
Peter Richtarik (KAUST)
More from the Same Authors
-
2021 : Better Linear Rates for SGD with Data Shuffling »
Grigory Malinovsky · Alibek Sailanbayev · Peter Richtarik -
2021 : Better Linear Rates for SGD with Data Shuffling »
Grigory Malinovsky · Alibek Sailanbayev · Peter Richtarik -
2021 : Shifted Compression Framework: Generalizations and Improvements »
Egor Shulgin · Peter Richtarik -
2021 : EF21 with Bells & Whistles: Practical Algorithmic Extensions of Modern Error Feedback »
Peter Richtarik · Igor Sokolov · Ilyas Fatkhullin · Eduard Gorbunov · Zhize Li -
2021 : On Server-Side Stepsizes in Federated Optimization: Theory Explaining the Heuristics »
Grigory Malinovsky · Konstantin Mishchenko · Peter Richtarik -
2021 : FedMix: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning »
Elnur Gasanov · Ahmed Khaled Ragab Bayoumi · Samuel Horváth · Peter Richtarik -
2021 : FedMix: A Simple and Communication-Efficient Alternative to Local Methods in Federated Learning »
Elnur Gasanov · Ahmed Khaled Ragab Bayoumi · Samuel Horváth · Peter Richtarik -
2022 Poster: Theoretically Better and Numerically Faster Distributed Optimization with Smoothness-Aware Quantization Techniques »
Bokun Wang · Mher Safaryan · Peter Richtarik -
2022 : RandProx: Primal-Dual Optimization Algorithms with Randomized Proximal Updates »
Laurent Condat · Peter Richtarik -
2022 : Distributed Newton-Type Methods with Communication Compression and Bernoulli Aggregation »
Rustem Islamov · Xun Qian · Slavomír Hanzely · Mher Safaryan · Peter Richtarik -
2022 : Certified Robustness in Federated Learning »
Motasem Alfarra · Juan Perez · Egor Shulgin · Peter Richtarik · Bernard Ghanem -
2023 Poster: 2Direction: Theoretically Faster Distributed Training with Bidirectional Communication Compression »
Alexander Tyurin · Peter Richtarik -
2023 Poster: A Computation and Communication Efficient Method for Distributed Nonconvex Problems in the Partial Participation Setting »
Alexander Tyurin · Peter Richtarik -
2023 Poster: A Guide Through the Zoo of Biased SGD »
Yury Demidovich · Grigory Malinovsky · Igor Sokolov · Peter Richtarik -
2023 Poster: Optimal Time Complexities of Parallel Stochastic Optimization Methods Under a Fixed Computation Model »
Alexander Tyurin · Peter Richtarik -
2023 Poster: Momentum Provably Improves Error Feedback! »
Ilyas Fatkhullin · Alexander Tyurin · Peter Richtarik -
2022 Spotlight: Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave Saddle-Point Problems with Bilinear Coupling »
Dmitry Kovalev · Alexander Gasnikov · Peter Richtarik -
2022 Spotlight: Communication Acceleration of Local Gradient Methods via an Accelerated Primal-Dual Algorithm with an Inexact Prox »
Abdurakhmon Sadiev · Dmitry Kovalev · Peter Richtarik -
2022 Spotlight: Distributed Methods with Compressed Communication for Solving Variational Inequalities, with Theoretical Guarantees »
Aleksandr Beznosikov · Peter Richtarik · Michael Diskin · Max Ryabinin · Alexander Gasnikov -
2022 Spotlight: Optimal Algorithms for Decentralized Stochastic Variational Inequalities »
Dmitry Kovalev · Aleksandr Beznosikov · Abdurakhmon Sadiev · Michael Persiianov · Peter Richtarik · Alexander Gasnikov -
2022 Spotlight: Lightning Talks 4A-1 »
Jiawei Huang · Su Jia · Abdurakhmon Sadiev · Ruomin Huang · Yuanyu Wan · Denizalp Goktas · Jiechao Guan · Andrew Li · Wei-Wei Tu · Li Zhao · Amy Greenwald · Jiawei Huang · Dmitry Kovalev · Yong Liu · Wenjie Liu · Peter Richtarik · Lijun Zhang · Zhiwu Lu · R Ravi · Tao Qin · Wei Chen · Hu Ding · Nan Jiang · Tie-Yan Liu -
2022 Workshop: Federated Learning: Recent Advances and New Challenges »
Shiqiang Wang · Nathalie Baracaldo · Olivia Choudhury · Gauri Joshi · Peter Richtarik · Praneeth Vepakomma · Han Yu -
2022 Poster: Communication Acceleration of Local Gradient Methods via an Accelerated Primal-Dual Algorithm with an Inexact Prox »
Abdurakhmon Sadiev · Dmitry Kovalev · Peter Richtarik -
2022 Poster: A Damped Newton Method Achieves Global $\mathcal O \left(\frac{1}{k^2}\right)$ and Local Quadratic Convergence Rate »
Slavomír Hanzely · Dmitry Kamzolov · Dmitry Pasechnyuk · Alexander Gasnikov · Peter Richtarik · Martin Takac -
2022 Poster: BEER: Fast $O(1/T)$ Rate for Decentralized Nonconvex Optimization with Communication Compression »
Haoyu Zhao · Boyue Li · Zhize Li · Peter Richtarik · Yuejie Chi -
2022 Poster: EF-BV: A Unified Theory of Error Feedback and Variance Reduction Mechanisms for Biased and Unbiased Compression in Distributed Optimization »
Laurent Condat · Kai Yi · Peter Richtarik -
2022 Poster: Optimal Algorithms for Decentralized Stochastic Variational Inequalities »
Dmitry Kovalev · Aleksandr Beznosikov · Abdurakhmon Sadiev · Michael Persiianov · Peter Richtarik · Alexander Gasnikov -
2022 Poster: Accelerated Primal-Dual Gradient Method for Smooth and Convex-Concave Saddle-Point Problems with Bilinear Coupling »
Dmitry Kovalev · Alexander Gasnikov · Peter Richtarik -
2022 Poster: Distributed Methods with Compressed Communication for Solving Variational Inequalities, with Theoretical Guarantees »
Aleksandr Beznosikov · Peter Richtarik · Michael Diskin · Max Ryabinin · Alexander Gasnikov -
2021 : Contributed talks in Session 3 (Zoom) »
Oliver Hinder · Wenhao Zhan · Akhilesh Soni · Grigory Malinovsky · Boyue Li -
2021 : Q&A with Professor Peter Richtarik »
Peter Richtarik -
2021 : Keynote Talk: Permutation Compressors for Provably Faster Distributed Nonconvex Optimization (Peter Richtarik) »
Peter Richtarik -
2021 : Poster Session 1 (gather.town) »
Hamed Jalali · Robert Hönig · Maximus Mutschler · Manuel Madeira · Abdurakhmon Sadiev · Egor Shulgin · Alasdair Paren · Pascal Esser · Simon Roburin · Julius Kunze · Agnieszka Słowik · Frederik Benzing · Futong Liu · Hongyi Li · Ryotaro Mitsuboshi · Grigory Malinovsky · Jayadev Naram · Zhize Li · Igor Sokolov · Sharan Vaswani -
2021 Poster: Smoothness Matrices Beat Smoothness Constants: Better Communication Compression Techniques for Distributed Optimization »
Mher Safaryan · Filip Hanzely · Peter Richtarik -
2021 Poster: EF21: A New, Simpler, Theoretically Better, and Practically Faster Error Feedback »
Peter Richtarik · Igor Sokolov · Ilyas Fatkhullin -
2021 Poster: Error Compensated Distributed SGD Can Be Accelerated »
Xun Qian · Peter Richtarik · Tong Zhang -
2021 Poster: CANITA: Faster Rates for Distributed Convex Optimization with Communication Compression »
Zhize Li · Peter Richtarik -
2021 Poster: Lower Bounds and Optimal Algorithms for Smooth and Strongly Convex Decentralized Optimization Over Time-Varying Networks »
Dmitry Kovalev · Elnur Gasanov · Alexander Gasnikov · Peter Richtarik -
2021 Oral: EF21: A New, Simpler, Theoretically Better, and Practically Faster Error Feedback »
Peter Richtarik · Igor Sokolov · Ilyas Fatkhullin -
2020 : Poster Session 1 (gather.town) »
Laurent Condat · Tiffany Vlaar · Ohad Shamir · Mohammadi Zaki · Zhize Li · Guan-Horng Liu · Samuel Horváth · Mher Safaryan · Yoni Choukroun · Kumar Shridhar · Nabil Kahale · Jikai Jin · Pratik Kumar Jawanpuria · Gaurav Kumar Yadav · Kazuki Koyama · Junyoung Kim · Xiao Li · Saugata Purkayastha · Adil Salim · Dighanchal Banerjee · Peter Richtarik · Lakshman Mahto · Tian Ye · Bamdev Mishra · Huikang Liu · Jiajie Zhu -
2020 Poster: Primal Dual Interpretation of the Proximal Stochastic Gradient Langevin Algorithm »
Adil Salim · Peter Richtarik -
2020 Poster: Linearly Converging Error Compensated SGD »
Eduard Gorbunov · Dmitry Kovalev · Dmitry Makarenko · Peter Richtarik -
2020 Poster: Random Reshuffling: Simple Analysis with Vast Improvements »
Konstantin Mishchenko · Ahmed Khaled Ragab Bayoumi · Peter Richtarik -
2020 Spotlight: Linearly Converging Error Compensated SGD »
Eduard Gorbunov · Dmitry Kovalev · Dmitry Makarenko · Peter Richtarik -
2020 Session: Orals & Spotlights Track 21: Optimization »
Peter Richtarik · Marco Cuturi -
2020 Poster: Lower Bounds and Optimal Algorithms for Personalized Federated Learning »
Filip Hanzely · Slavomír Hanzely · Samuel Horváth · Peter Richtarik -
2020 Poster: Optimal and Practical Algorithms for Smooth and Strongly Convex Decentralized Optimization »
Dmitry Kovalev · Adil Salim · Peter Richtarik -
2019 Poster: RSN: Randomized Subspace Newton »
Robert Gower · Dmitry Kovalev · Felix Lieder · Peter Richtarik -
2019 Poster: Stochastic Proximal Langevin Algorithm: Potential Splitting and Nonasymptotic Rates »
Adil Salim · Dmitry Kovalev · Peter Richtarik -
2019 Spotlight: Stochastic Proximal Langevin Algorithm: Potential Splitting and Nonasymptotic Rates »
Adil Salim · Dmitry Kovalev · Peter Richtarik -
2018 Poster: Stochastic Spectral and Conjugate Descent Methods »
Dmitry Kovalev · Peter Richtarik · Eduard Gorbunov · Elnur Gasanov -
2018 Poster: Accelerated Stochastic Matrix Inversion: General Theory and Speeding up BFGS Rules for Faster Second-Order Optimization »
Robert Gower · Filip Hanzely · Peter Richtarik · Sebastian Stich -
2018 Poster: SEGA: Variance Reduction via Gradient Sketching »
Filip Hanzely · Konstantin Mishchenko · Peter Richtarik -
2015 Poster: Quartz: Randomized Dual Coordinate Ascent with Arbitrary Sampling »
Zheng Qu · Peter Richtarik · Tong Zhang