Timezone: »
The analysis of spatio-temporal sequences plays an important role in many real-world applications, demanding a high model capacity to capture the interdependence among spatial and temporal dimensions. Previous studies provided separated network design in three categories: spatial first, temporal first, and spatio-temporal synchronous. However, the manually-designed heterogeneous models can hardly meet the spatio-temporal dependency capturing priority for various tasks. To address this, we proposed a universal modeling framework with three distinctive characteristics: (i) Attention-based network backbone, including S2T Layer (spatial first), T2S Layer (temporal first), and STS Layer (spatio-temporal synchronous). (ii) The universal modeling framework, named UniST, with a unified architecture that enables flexible modeling priorities with the proposed three different modules. (iii) An automatic search strategy, named AutoST, automatically searches the optimal spatio-temporal modeling priority by network architecture search. Extensive experiments on five real-world datasets demonstrate that UniST with any single type of our three proposed modules can achieve state-of-the-art performance. Furthermore, AutoST can achieve overwhelming performance with UniST.
Author Information
Jianxin Li (Beihang University)
Shuai Zhang (Beihang University)
Hui Xiong (Hong Kong University of Science and Technology )
Haoyi Zhou (Beihang University)
More from the Same Authors
-
2022 Poster: MetaMask: Revisiting Dimensional Confounder for Self-Supervised Learning »
Jiangmeng Li · Wenwen Qiang · Yanan Zhang · Wenyi Mo · Changwen Zheng · Bing Su · Hui Xiong -
2023 Poster: Environment-Aware Dynamic Graph Learning for Out-of-Distribution Generalization »
Haonan Yuan · Qingyun Sun · Xingcheng Fu · Ziwei Zhang · Cheng Ji · Hao Peng · Jianxin Li -
2023 Poster: Does Graph Distillation See Like Vision Dataset Counterpart? »
Beining Yang · Kai Wang · Qingyun Sun · Cheng Ji · Xingcheng Fu · Hao Tang · Yang You · Jianxin Li -
2023 Poster: UUKG: Unified Urban Knowledge Graph Dataset for Urban Spatiotemporal Prediction »
Yansong Ning · Hao Liu · Hao Wang · Zhenyu Zeng · Hui Xiong -
2022 Spotlight: Lightning Talks 2B-2 »
Chenjian Gao · Rui Ding · Lingzhi LI · Fan Yang · Xingting Yao · Jianxin Li · Bing Su · Zhen Shen · Tongda Xu · Shuai Zhang · Ji-Rong Wen · Lin Guo · Fanrong Li · Kehua Guo · Zhongshu Wang · Zhi Chen · Xiangyuan Zhu · Zitao Mo · Dailan He · Hui Xiong · Yan Wang · Zheng Wu · Wenbing Tao · Jian Cheng · Haoyi Zhou · Li Shen · Ping Tan · Liwei Wang · Hongwei Qin -
2022 Spotlight: AutoST: Towards the Universal Modeling of Spatio-temporal Sequences »
Jianxin Li · Shuai Zhang · Hui Xiong · Haoyi Zhou -
2022 Poster: Jump Self-attention: Capturing High-order Statistics in Transformers »
Haoyi Zhou · Siyang Xiao · Shanghang Zhang · Jieqi Peng · Shuai Zhang · Jianxin Li