Timezone: »

Generalizing Consistent Multi-Class Classification with Rejection to be Compatible with Arbitrary Losses
Yuzhou Cao · Tianchi Cai · Lei Feng · Lihong Gu · Jinjie GU · Bo An · Gang Niu · Masashi Sugiyama

\emph{Classification with rejection} (CwR) refrains from making a prediction to avoid critical misclassification when encountering test samples that are difficult to classify. Though previous methods for CwR have been provided with theoretical guarantees, they are only compatible with certain loss functions, making them not flexible enough when the loss needs to be changed with the dataset in practice. In this paper, we derive a novel formulation for CwR that can be equipped with arbitrary loss functions while maintaining the theoretical guarantees. First, we show that $K$-class CwR is equivalent to a $(K\!+\!1)$-class classification problem on the original data distribution with an augmented class, and propose an empirical risk minimization formulation to solve this problem with an estimation error bound. Then, we find necessary and sufficient conditions for the learning \emph{consistency} of the surrogates constructed on our proposed formulation equipped with any classification-calibrated multi-class losses, where consistency means the surrogate risk minimization implies the target risk minimization for CwR. Finally, experiments on benchmark datasets validate the effectiveness of our proposed method.

Author Information

Yuzhou Cao (Nanyang Technological University)
Tianchi Cai (Ant Group)
Lei Feng (Nanyang Technological University)
Lihong Gu (University of Electronic Science and Technology of China, Tsinghua University)
Jinjie GU (Ant Group)
Bo An (Nanyang Technological University)
Gang Niu (RIKEN)
Gang Niu

Gang Niu is currently an indefinite-term senior research scientist at RIKEN Center for Advanced Intelligence Project.

Masashi Sugiyama (RIKEN / University of Tokyo)

More from the Same Authors