Timezone: »
We consider the problem of estimating states (e.g., position and velocity) and physical parameters (e.g., friction, elasticity) from a sequence of observations when provided a dynamic equation that describes the behavior of the system. The dynamic equation can arise from first principles (e.g., Newton’s laws) and provide useful cues for learning, but its physical parameters are unknown. To address this problem, we propose a model that estimates states and physical parameters of the system using two main components. First, an autoencoder compresses a sequence of observations (e.g., sensor measurements, pixel images) into a sequence for the state representation that is consistent with physics by including a simulation of the dynamic equation. Second, an estimator is coupled with the autoencoder to predict the values of the physical parameters. We also theoretically and empirically show that using Fourier feature mappings improves generalization of the estimator in predicting physical parameters compared to raw state sequences. In our experiments on three visual and one sensor measurement tasks, our model imposes interpretability on latent states and achieves improved generalization performance for long-term prediction of system dynamics over state-of-the-art baselines.
Author Information
Tsung-Yen Yang (Princeton University / Meta AI)
I am a graduate student in the Department of Electrical Engineering at Princeton University, working with Prof. Peter Ramadge and Prof. Karthik Narasimhan since September 2017. My research interests lie at the intersection of machine learning, reinforcement learning, and natural language processing. Specifically, I work on safe reinforcement learning, focusing on building autonomous systems that acquire knowledge by interacting with the world, and providing provable safety guarantees during training and deployment.
Justinian Rosca (Siemens Corporation, Technology)
Karthik Narasimhan (Princeton University)
Peter J. Ramadge (Princeton)
More from the Same Authors
-
2021 Spotlight: Safe Reinforcement Learning with Natural Language Constraints »
Tsung-Yen Yang · Michael Y Hu · Yinlam Chow · Peter J. Ramadge · Karthik Narasimhan -
2021 : ProBF: Probabilistic Safety Certificates with Barrier Functions »
Sulin Liu · Athindran Ramesh Kumar · Jaime Fisac · Ryan Adams · Peter J. Ramadge -
2022 : REACT: Synergizing Reasoning and Acting in Language Models »
Shunyu Yao · Jeffrey Zhao · Dian Yu · Izhak Shafran · Karthik Narasimhan · Yuan Cao -
2022 : Towards an Enhanced, Faithful, and Adaptable Web Interaction Environment »
John Yang · Howard Chen · Karthik Narasimhan -
2023 Poster: Reflexion: language agents with verbal reinforcement learning »
Noah Shinn · Federico Cassano · Ashwin Gopinath · Karthik Narasimhan · Shunyu Yao -
2023 Poster: Tree of Thoughts: Deliberate Problem Solving with Large Language Models »
Shunyu Yao · Dian Yu · Jeffrey Zhao · Izhak Shafran · Tom Griffiths · Yuan Cao · Karthik Narasimhan -
2023 Poster: InterCode: Standardizing and Benchmarking Interactive Coding with Execution Feedback »
John Yang · Akshara Prabhakar · Karthik Narasimhan · Shunyu Yao -
2023 Oral: Tree of Thoughts: Deliberate Problem Solving with Large Language Models »
Shunyu Yao · Dian Yu · Jeffrey Zhao · Izhak Shafran · Tom Griffiths · Yuan Cao · Karthik Narasimhan -
2023 Competition: The HomeRobot Open Vocabulary Mobile Manipulation Challenge »
Sriram Yenamandra · Arun Ramachandran · Mukul Khanna · Karmesh Yadav · Devendra Singh Chaplot · Gunjan Chhablani · Alexander Clegg · Theophile Gervet · Vidhi Jain · Ruslan Partsey · Ram Ramrakhya · Andrew Szot · Austin Wang · Tsung-Yen Yang · Aaron Edsinger · Charles Kemp · Binit Shah · Zsolt Kira · Dhruv Batra · Roozbeh Mottaghi · Yonatan Bisk · Chris Paxton -
2022 : Karthik Narasimhan: Semantic Supervision for few-shot generalization and personalization »
Karthik Narasimhan -
2022 Poster: KERPLE: Kernelized Relative Positional Embedding for Length Extrapolation »
Ta-Chung Chi · Ting-Han Fan · Peter J. Ramadge · Alexander Rudnicky -
2022 Poster: Using natural language and program abstractions to instill human inductive biases in machines »
Sreejan Kumar · Carlos G. Correa · Ishita Dasgupta · Raja Marjieh · Michael Y Hu · Robert Hawkins · Jonathan D Cohen · nathaniel daw · Karthik Narasimhan · Tom Griffiths -
2022 Poster: WebShop: Towards Scalable Real-World Web Interaction with Grounded Language Agents »
Shunyu Yao · Howard Chen · John Yang · Karthik Narasimhan -
2022 Poster: DataMUX: Data Multiplexing for Neural Networks »
Vishvak Murahari · Carlos Jimenez · Runzhe Yang · Karthik Narasimhan -
2021 Poster: Safe Reinforcement Learning with Natural Language Constraints »
Tsung-Yen Yang · Michael Y Hu · Yinlam Chow · Peter J. Ramadge · Karthik Narasimhan -
2020 Poster: Task-Agnostic Amortized Inference of Gaussian Process Hyperparameters »
Sulin Liu · Xingyuan Sun · Peter J. Ramadge · Ryan Adams -
2016 Poster: Hierarchical Deep Reinforcement Learning: Integrating Temporal Abstraction and Intrinsic Motivation »
Tejas Kulkarni · Karthik Narasimhan · Ardavan Saeedi · Josh Tenenbaum -
2015 Poster: A Reduced-Dimension fMRI Shared Response Model »
Cameron Po-Hsuan Chen · Janice Chen · Yaara Yeshurun · Uri Hasson · James Haxby · Peter J. Ramadge -
2015 Oral: A Reduced-Dimension fMRI Shared Response Model »
Cameron Po-Hsuan Chen · Janice Chen · Yaara Yeshurun · Uri Hasson · James Haxby · Peter J. Ramadge -
2012 Poster: Kernel Hyperalignment »
Alexander Lorbert · Peter J. Ramadge -
2012 Spotlight: Kernel Hyperalignment »
Alexander Lorbert · Peter J. Ramadge -
2011 Poster: Learning Sparse Representations of High Dimensional Data on Large Scale Dictionaries »
Zhen James Xiang · Hao Xu · Peter J. Ramadge -
2011 Oral: Learning Sparse Representations of High Dimensional Data on Large Scale Dictionaries »
Zhen James Xiang · Hao Xu · Peter J. Ramadge -
2009 Poster: Boosting with Spatial Regularization »
Zhen James Xiang · Yongxin Xi · Uri Hasson · Peter J. Ramadge -
2009 Spotlight: Boosting with Spatial Regularization »
Zhen James Xiang · Yongxin Xi · Uri Hasson · Peter J. Ramadge -
2009 Poster: fMRI-Based Inter-Subject Cortical Alignment Using Functional Connectivity »
Bryan Conroy · Ben Singer · James Haxby · Peter J. Ramadge